Subscribe free to our newsletters via your
. Space Travel News .




INTERN DAILY
Newly discovered antibiotic kills pathogens without resistance
by Staff Writers
Boston MA (SPX) Jan 13, 2015


File image.

For years, pathogens' resistance to antibiotics has put them one step ahead of researchers, which is causing a public health crisis, according to University Distinguished Professor Kim Lewis. But in new research, Lewis and his colleagues present a newly discovered antibiotic that eliminates pathogens without encountering any detectable resistance - a finding that challenges long-held scientific beliefs and holds great promise for treating chronic infections like tuberculosis and those caused by MRSA. The research was published Wednesday in the journal Nature.

Northeastern researchers' pioneering work to develop a novel method for growing uncultured bacteria led to the discovery of the antibiotic, called teixobactin, and Lewis' lab played a key role in analyzing and testing the compound for resistance from pathogens. Lewis, who is the paper's lead author, said this marks the first discovery of an antibiotic to which resistance by mutations of pathogens have not been identified.

Lewis and Northeastern biology professor Slava Epstein co-authored the paper with colleagues from the University of Bonn in Germany, NovoBiotic Pharmaceuticals in Cambridge, Massachusetts, and Selcia Limited in the United Kingdom.

The research team says teixobactin's discovery presents a promising new opportunity to treat chronic infections caused by staphylococcus aureus, or MSRA, that are highly resistant to antibiotics, as well as tuberculosis, which involves a combination of therapies with negative side effects.

The screening of soil microorganisms has produced most antibiotics, but only 1 percent of them will grow in the lab, and this limited resource was overmined in the 1960s, Lewis explained.

He and Epstein spent years seeking to address this problem by tapping into a new source of antibiotics beyond those created by synthetic means: uncultured bacteria, which make up 99 percent of all species in external environments. They developed a novel method for growing uncultured bacteria in their natural environment, which led to the founding of NovoBiotic.

Their approach involves the iChip, a miniature device Epstein's team created that can isolate and help grow single cells in their natural environment and thereby provides researchers with much improved access to uncultured bacteria. NovoBiotic has since assembled about 50,000 strains of uncultured bacteria and discovered 25 new antibiotics, of which teixobactin is the latest and most interesting, Lewis said.

The antibiotic was discovered during a routine screening for antimicrobial material using this method. Lewis then tested the compound for resistance development and did not find mutant MSRA or Mycobacterium tuberculosis resistant to teixobactin, which was found to block several different targets in the cell wall synthesis pathway.

"Our impression is that nature produced a compound that evolved to be free of resistance," Lewis said. "This challenges the dogma that we've operated under that bacteria will always develop resistance. Well, maybe not in this case."

Gerard Wright, a professor in the Department of Biochemistry and Biomedical Sciences at McMaster University and who was not involved in this research, examined the team's work in a separate article for Nature published in concert with the new research paper. In his article, Wright noted that while it remains to be seen whether other mechanisms for resistance against teixobactin exist in the environment, the team's work could lead to identifying "other 'resistance-light' antibiotics."

"(The researchers') work offers hope that innovation and creativity can combine to solve the antibiotics crisis," Wright wrote.

Going forward, the research team hopes to develop teixobactin into a drug.

In 2013, Lewis revealed groundbreaking research in a separate paper published by Nature that presented a novel approach to treat and eliminate MRSA - the so-called "superbug" that infects 1 million Americans annually. Lewis and his team discovered a way to destroy the dormant persister cells, which are key to the success of chronic infections caused by MRSA.

Lewis said this latest research lays new ground to advance his innovative work on treating MRSA and other chronic infections.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Northeastern University
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








INTERN DAILY
Flexible, biocompatible implant slips into the spinal cord
Lausanne, France (SPX) Jan 11, 2015
EPFL scientists have managed to get rats walking on their own again using a combination of electrical and chemical stimulation. But applying this method to humans would require multifunctional implants that could be installed for long periods of time on the spinal cord without causing any tissue damage. This is precisely what the teams of professors Stephanie Lacour and Gregoire Courtine h ... read more


INTERN DAILY
Soyuz Installed at Baikonur, Expected to Launch Wednesday

SpaceX launches cargo to ISS, rocket ocean landing fails

SpaceX to attempt rocket, cargo launch Saturday

Arianespace confident current and future launcher family will meet needs

INTERN DAILY
Russia-EU Mars Research Program to Be Completed

Mars is warmer than some parts of the U.S. and Canada

NASA Mars Rover Opportunity Climbs to High Point on Rim

Potential Signs of Ancient Life in Mars Rover Photos

INTERN DAILY
Service Module of Chinese Probe Enters Lunar Orbit

Chinese spacecraft to return to moon's orbit

Russian Company Proposes to Build Lunar Base

'Shooting the Moon' with Satellite Laser Ranging

INTERN DAILY
Swarms of Pluto-Size Objects Kick Up Dust around Adolescent Sun-Like Star

On Pluto's Doorstep, NASA's New Horizons Spacecraft Awakens for Encounter

New Horizons Wakes Up on Pluto's Doorstep

NASA craft to probe Pluto after nine-year journey

INTERN DAILY
A twist on planetary origins

NameExoWorlds contest opens

CfA: Eight New Planets Found in "Goldilocks" Zone

Eight new planets found in 'Goldilocks' zone

INTERN DAILY
Watch NASA test the newest space launch system rocket engine

NASA Completes Investigation of July 2014 Sounding Rocket Failure

RS-25 Engine Testing Blazes Forward for Space Launch System

Angara-A5 Launch Opens New Page in Russia's Space Exploration

INTERN DAILY
China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

China develops new rocket for manned moon mission: media

INTERN DAILY
Dawn of a strange new world

See comet Lovejoy with the naked eye this weekend

Amateur astronomers capture comet Lovejoy on camera

Comet Lovejoy Glows Brightest During Mid-January




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.