Space Travel News  
FLORA AND FAUNA
New study explores ecosystem stability
by Staff Writers
San Francisco CA (SPX) Dec 04, 2018

An ancient relative of crocodiles and birds (left) attacks an ancient relative of plant-eating mammals (right) in an illustration depicting life 240 million years ago.

In an era of rapid ecological change, scientists are turning to historical periods of persistence to better understand what drives stability. A team from the California Academy of Sciences and the Field Museum of Natural History has examined the structural complexity of ancient ecosystems by looking at the number of species and how they're organized by function, such as top predators or decomposers.

All stable ecosystems have species grouped by function, and the study found that these functional groupings are more important to an ecosystem's stability than the sheer number of species present.

Surprisingly, the study also found that among simulated systems of equal but different complexity, those representing actual ancient ecosystems tended to be more stable. The team is now investigating why certain functional compositions are better than others and how those structures arise over time. Understanding the organization of stable ecosystems of the past allows scientists to better predict whether modern human impacts have pushed our current planetary system past a point of recovering to its original state.

To run their analysis, the team studied a large mass extinction event that took place 252 million years ago and its impacts on ancient South African ecosystems. Their findings, published this week in the journal Earth-Science Reviews, present one of the strongest arguments to date for saving systems of species rather than individuals in the modern day.

"In examining the communities before and after this mass extinction event, we found that the longest-lasting systems were not distinguished by any obvious features, except for having longer evolutionary histories," says Dr. Peter Roopnarine, lead author and Academy Curator of Geology.

"The functional structures that arose over time in those systems allowed species to have lower probabilities of extinction, and to coexist more stably, under varying ecological conditions. The opposite was true of several communities that arose quickly after the mass extinction, although those communities were also rich in species."

The team then modeled millions of alternate structures in search of other ways an ecosystem could support strong species coexistence, but very few structures proved superior to the stable systems they'd identified in the fossil record. The team's alternate functional arrangements all varied; some organized the species into different functions, others changed the way those species interacted, and some even altered the flow of energy between species.

"It's unlikely these successes arose purely by chance," says Roopnarine. "This tells us there's a strong imprint on history - a clear repetition - of how ecosystems are built over geological and evolutionary time. We don't know why the stable communities pre-extinction and post-recovery were so much better than our modeled alternatives, but evolution clearly favored them and their functional organization. Figuring out why stable communities emerge over time is one of the next big questions."

Step into the Karoo
The team chose the Karoo Basin in South Africa for the study due to the region's unparalleled fossil record. The study analysis begins about 254 million years ago, when Africa, Antarctica, and South America surrounded the Karoo in the supercontinent known as Gondwana. Ancient relatives of mammals dominated the then-forested landscape.The Karoo had reached its highest level of species diversity when climate change hit.

"Around 252 million years ago, huge volcanic eruptions occurred in what is now Siberia," says Dr. Kenneth Angielczyk, Associate Curator of Paleomammalogy at the Field Museum of Natural History.

"In the process of these eruptions, magma burned through coal deposits in the surrounding rocks, releasing greenhouse gasses like carbon dioxide. Additional greenhouse gasses were released by the erupting lava, and together these processes began to alter global climate. It was essentially a massive burning of fossil fuels, with parallels to what we're seeing today, but over tens of millennia."

Several waves of extinction followed, reducing the Karoo ecosystem to a fraction of what it was. Eventually, a rebound in diversity formed a new ecosystem that included survivors of the extinction plus species that had migrated in from surrounding areas. Despite the uptick in species numbers, the system was geologically short-lived. As the recovery proceeded over the next several million years, a system emerged that had a familiar feature: a functional organization that supported above-average stability of species coexistence.

"When you have species on the move because of environmental upheaval, or you force species together into communities in which they did not co-evolve, those systems are almost invariably less successful than systems where species have shared histories," says Roopnarine. "Today, we can't tinker with ecosystems, have them fall apart functionally, and expect life to carry on and recover in a way that normally takes tens of thousands of years to happen. The fossil record shows this approach isn't sustainable."

Considering alternate histories
The team modeled millions of alternate histories to better understand the Karoo's collapse and recovery. They based their models on direct and indirect evidence of interactions from the fossil record: Fossilized stomach contents and skeletal damage indicate signs of predation, while body size, skull size, and habitat indicate potential species interactions.

The team also drew analogies to modern animals that are ecologically similar or closely related on the evolutionary tree. Using computerized mathematical models, they then conducted millions of "thought experiments" on each community to test the effect of changing a community's functional organization on its extinction rate.

One alternate structure the team modeled eliminates all functional organization, so that species are free to interact without any established hierarchy of who eats whom. Another alternative preserves the original number of functional groupings and the number of species, but changes the interactions among them so that energy flows differently between species. A third alternative changes the number of species in each functional group altogether - such as the ratio of predators to prey - but this made a negligible difference in the community's stability.

"We found that any kind of species organization is better than no organization, but some patterns are definitely superior to others," says Angielczyk. "Exactly how species evolution leads to the assembly of stable communities from the wide range of possible alternatives, and the mathematical reasons for why those alternatives differ in stability, are some of our next big questions."

The team hopes that better understanding periods of persistence will inform how far along modern society is in disassembling current planetary systems. "The points of departure for species and ecological communities aren't necessarily the same," says Roopnarine. "The question is whether our entire planet has already turned down a new ecological and evolutionary pathway entirely or if we're still operating in the capacity of our current system."

The study findings highlight the importance of the fossil record in helping to forecast the future.

"The ecological systems we have today are documented products of geological and evolutionary history - they're not easily made nor easily recovered," says Roopnarine. "We have a choice in alternate histories here, and my hope is that we choose to take care of the planetary system that has supported life as we know it for millennia."

Research paper


Related Links
California Academy of Sciences
Darwin Today At TerraDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


FLORA AND FAUNA
Single-cell asymmetries control how groups of cells form 3D shapes together
Washington DC (SPX) Nov 28, 2018
Scientists have developed a mathematical model showing that two types of cellular asymmetry, or 'polarity', govern the shaping of cells into sheets and tubes, according to an article in eLife. The research is a major advance in understanding the processes that allow a single cell to develop into an entire organism, and could help understand what happens when cells gain or lose their polarity in diseases such as cancer. Multicellular organisms can develop highly complex structures that make u ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

FLORA AND FAUNA
FLORA AND FAUNA
Over Five Months Without Word From Opportunity

Life at home on Mars in a Big Sandbox

Safely on Mars, InSight unfolds its arrays and snaps some pics

SpaceBok robotic hopper being tested at ESA's Mars Yard

FLORA AND FAUNA
NASA Announces New Partnerships for Commercial Lunar Payload Delivery Services

Lockheed Martin Selected for NASA's Commercial Lunar Lander Payload Services Contract

Construction of Russian Lunar Orbital Station May Be Launched in 2025

NASA chooses nine companies to bid on flying to Moon

FLORA AND FAUNA
Radio JOVE From NASA: Tuning In to Your Local Celestial Radio Show

The PI's Perspective: Share the News - The Farthest Exploration of Worlds in History is Beginning

Encouraging prospects for moon hunters

Evidence for ancient glaciation on Pluto

FLORA AND FAUNA
Telescopes Reveal More Than 100 Exoplanets

Oxygen could have been available to life as early as 3.5 billion years ago

Exoplanet mission launch slot announced

New Climate Models of TRAPPIST-1's Seven Intriguing Worlds

FLORA AND FAUNA
Moldy mouse food postpones SpaceX launch

SpaceX's Falcon 9 launches 64 satellites into space

NASA chief says Elon Musk won't be smoking joints publicly again

SpaceX to carry more than 20 new experiments to ISS

FLORA AND FAUNA
Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

China releases smart solution for verifying reliability of space equipment components

China unveils new 'Heavenly Palace' space station as ISS days numbered

FLORA AND FAUNA
NASA's first asteroid sample-collector arrives at target, Bennu

OSIRIS-REx Spacecraft Arrives at Asteroid Bennu

Taking the Measure of an Asteroid

NASA provides live coverage of OSIRIS-REx arrival at Asteroid Bennu









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.