Subscribe free to our newsletters via your
. Space Travel News .




ABOUT US
New software analyzes human genomes faster than ever
by Staff Writers
Columbus OH (SPX) Feb 04, 2015


File image.

Investigators at Nationwide Children's Hospital have developed an analysis "pipeline" that slashes the time it takes to search a person's genome for disease-causing variations from weeks to hours. An article describing the ultra-fast, highly scalable software was published in the latest issue of Genome Biology.

"It took around 13 years and $3 billion to sequence the first human genome," says Peter White, PhD, principal investigator and director of the Biomedical Genomics Core at Nationwide Children's and the study's senior author.

"Now, even the smallest research groups can complete genomic sequencing in a matter of days. However, once you've generated all that data, that's the point where many groups hit a wall. After a genome is sequenced, scientists are left with billions of data points to analyze before any truly useful information can be gleaned for use in research and clinical settings."

To overcome the challenges of analyzing that large amount of data, Dr. White and his team developed a computational pipeline called "Churchill." By using novel computational techniques, Churchill allows efficient analysis of a whole genome sample in as little as 90 minutes.

"Churchill fully automates the analytical process required to take raw sequence data through a series of complex and computationally intensive processes, ultimately producing a list of genetic variants ready for clinical interpretation and tertiary analysis," Dr. White explains. "Each step in the process was optimized to significantly reduce analysis time, without sacrificing data integrity, resulting in an analysis method that is 100 percent reproducible."

The output of Churchill was validated using National Institute of Standards and Technology (NIST) benchmarks. In comparison with other computational pipelines, Churchill was shown to have the highest sensitivity at 99.7 percent; highest accuracy at 99.99 percent and the highest overall diagnostic effectiveness at 99.66 percent.

"At Nationwide Children's we have a strategic goal to introduce genomic medicine into multiple domains of pediatric research and healthcare. Rapid diagnosis of monogenic disease can be critical in newborns, so our initial focus was to create an analysis pipeline that was extremely fast, but didn't sacrifice clinical diagnostic standards of reproducibility and accuracy" says Dr. White.

"Having achieved that, we discovered that a secondary benefit of Churchill was that it could be adapted for population scale genomic analysis."

By examining the computational resource use during the data analysis process, Dr. White's team was able to demonstrate that Churchill was both highly efficient (>90 percent resource utilization) and scaled very effectively across many servers. Alternative approaches limit analysis to a single server and have resource utilization as low as 30 percent. This efficiency and capability to scale enables population-scale genomic analysis to be performed.

To demonstrate Churchill's capability to perform population scale analysis, Dr. White and his team received an award from Amazon Web Services (AWS) in Education Research Grants program that enabled them to successfully analyze phase 1 of the raw data generated by the 1000 Genomes Project - an international collaboration to produce an extensive public catalog of human genetic variation, representing multiple populations from around the globe. Using cloud-computing resources from AWS, Churchill was able to complete analysis of 1,088 whole genome samples in seven days and identified millions of new genetics variants.

"Given that several population-scale genomic studies are underway, we believe that Churchill may be an optimal approach to tackle the data analysis challenges these studies are presenting," says Dr. White.

The Churchill algorithm was licensed to Columbus-based GenomeNext LLC, which has built upon the Churchill technology to develop a secure and automated software-as-a-service platform that enables users to simply upload raw whole-genome, exome or targeted panel sequence data to the GenomeNext system and run an analysis that not only identifies genetic variants but also generates fully annotated datasets enabling filtering and identification of pathogenic variants.

The company provides genomic data analysis solutions that simplify the process of data management and automate analysis of large scale genomic studies. The system was also developed with the research and clinical market in mind, offering a standardized pipeline that is well suited to settings where customers have to meet regulatory requirements.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Nationwide Children's Hospital
All About Human Beings and How We Got To Be Here






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ABOUT US
Skull discovery potentially housed brain like ours
Columbia SC (SPX) Feb 03, 2015
An SFU archaeologist and graduate student have helped an Israeli-led scientific team discover our direct ancestors likely came from Africa or the Middle East and not Europe. Francesco Berna, a Simon Fraser University assistant professor of archaeology, is part of an Israeli-led team of scientists that has unearthed major clues about the first modern humans in northern Israel. A paper ... read more


ABOUT US
Soyuz Installed at Baikonur, Expected to Launch Wednesday

SpaceX releases animation of heavy-lift Falcon rocket

NASA TV Coverage Reset for Launch of Newest Earth-Observing Mission

Japan delays launch of satellite due to weather

ABOUT US
Helicopter Could be 'Scout' for Mars Rovers

Hilltop Panorama Marks Mars Rover's 11th Anniversary

Mysteries in Nili Fossae

NASA, Microsoft Collaboration Will Allow Scientists to 'Work on Mars'

ABOUT US
Service Module of Chinese Probe Enters Lunar Orbit

Service module of China's lunar orbiter enters 127-minute orbit

Chinese spacecraft to return to moon's orbit

Russian Company Proposes to Build Lunar Base

ABOUT US
Something Special in the Air

NASA craft set to beam home close-ups of Pluto

New Horizons ready for planet's beyond beyond

Maybe two more planets in our Solar System: astronomers

ABOUT US
Dawn ahead!

Kepler astronomers discover ancient star with 5 Earth-size planets

Ancient star system has Earth-sized planets forming near start of universe

Gigantic ring system around J1407b much larger, heavier than Saturn's

ABOUT US
Space Launch System Booster Aimed and Ready to Fire

Russia Could Export 30 More Rocket Engines to US

Watch SpaceX nearly land rocket on floating barge

Watch NASA test the newest space launch system rocket engine

ABOUT US
More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

ABOUT US
Surface composition of BL86 studies during Earth flyby

Rosetta watches comet shed its dusty coat

Asteroid That Flew Past Earth Has Moon

Scientists befuddled by mysterious white spot on Ceres




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.