Space Travel News  
WOOD PILE
New research identifies 'triple trouble' for mangrove coasts
by Staff Writers
Exeter UK (SPX) Nov 11, 2020

File image showing the burnt remains of a mangrove forest after wild fires reached the Australian east coast.

Some of the world's most valuable ecosystems are facing a "triple threat" to their long-term durability and survival, new research shows.

The study found that mangrove forests, their large biodiversity and the coastal protection they provide are under pressure from three distinct threats - sea-level rise, lack of mud and squeezed habitats.

The research, conducted by an international team of experts including Dr Barend van Maanen from the University of Exeter, identifies not only how these coastal forests get pushed against their shores, but also what causes the loss of their diversity.

It shows the negative effects of river dams that decrease the supply of mud that could otherwise raise mangrove soils, while buildings and seawalls largely occupy the space that mangroves require for survival.

The study is published in Environmental Research Letters.

Coastal mangrove forests are valuable, highly biodiverse ecosystems that protect coastal communities against storms.

Mangroves withstand flooding by tides and capture mud to raise their soils. But as the mangrove trees cannot survive if they are under water for too long, the combination of sea-level rise and decreasing mud supply from rivers poses a serious threat.

New computer simulations show how coastal forests retreat landward under sea-level rise, especially in coastal areas where mud in the water is declining. The simulations include interactions among tides, mud transport and, for the first time, multiple mangrove species.

Dr van Maanen, senior lecturer at the University of Exeter and supervisor of the project, said: "Both mangrove coverage loss and diversity loss go hand in hand when that landward retreat is limited by expanding cities, agriculture or flood protection works."

The model also shows that mangrove trees with dense roots trap mud more effectively and can stop it from reaching forest areas further inland.

Danghan Xie, PhD researcher at Utrecht University and lead author of the study said: "This makes the more landward-located trees flood for longer periods of time, an effect that is intensified by sea-level rise.

"Increasing landward flooding then seriously reduces biodiversity.

"Human land use prevents the mangroves 'escaping' flooding by migrating inland, narrowing the mangrove zone and further endangering biodiversity."

A narrow mangrove zone is much less effective in protecting the coast against storms, or in the worst case loses its protective properties altogether.

Co-author Dr Christian Schwarz, environmental scientist at the University of Delaware, added: "The loss of mangrove species will have dramatic ecological and economic implications, but fortunately there are ways to help safeguarding these ecosystems.

"It is essential to secure or restore mud delivery to coasts to counter negative effects of sea-level rise.

"For coasts where mud supply remains limited, removal of barriers that obstruct inland migration is of utmost importance to avoid loss of mangrove forests and biodiversity."

Research Report: Mangrove diversity loss under sea-level rise triggered by bio-morphodynamic feedbacks and anthropogenic pressures


Related Links
University Of Exeter
Forestry News - Global and Local News, Science and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


WOOD PILE
Researchers figure out how, why trees in the Amazon perish
Washington DC (UPI) Nov 09, 2020
To absorb and store carbon, trees have to stay alive, but increasingly, trees in the Amazon are doing the opposite. Now, scientists know why. According to a new study published Monday in the journal Nature Communications, a tree species' mean growth rate is the primary risk factor for tree death in the Amazon. Researchers found faster-growing trees are more likely to die young. The findings help explain why tree mortality is increasing throughout the Amazon. Previous studies suggest clim ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WOOD PILE
WOOD PILE
Clay subsoil at Earth's driest place may signal life on Mars

Water on ancient Mars

Geologists simulate soil conditions to help grow plants on Mars

NASA's Perseverance Rover Is Midway to Mars

WOOD PILE
New mineral discovered in moon meteorite

NASA seeks new partners to help put all eyes on Artemis Moon missions

A new mineral from the Moon could explain what happens in the Earth's mantle

New remote sensing technique could bring key planetary mineral into focus

WOOD PILE
Where were Jupiter and Saturn born?

NASA's Webb To Examine Objects in the Graveyard of the Solar System

Lighting a Path to Find Planet Nine

The mountains of Pluto are snowcapped, but not for the same reasons as on Earth

WOOD PILE
Microbial space travel on a molecular scale

Supersonic winds, rocky rains forecasted on lava planet

Model of multicellular evolution overturns classic theory

Checking the speed of spirals

WOOD PILE
Rocket Lab demos new Kick Stage for in-space maneuvers

Sounding Rocket to See What Keeps Intergalactic Space Sizzling

ESA lays out roadmap to Ariane 6 and Vega-C flights

Rocket Lab launches 15th Mission - deploys sats Planet and Canon

WOOD PILE
China Focus: 18 reserve astronauts selected for China's manned space program

State-owned space giant prepares for giant step in space

China's Xichang launch center to carry out 10 missions by end of March

Eighteen new astronauts chosen for China's space station mission

WOOD PILE
A subterranean ecosystem in the Chicxulub Crater

The craters on Earth

First scientific instrument installed on Lucy

Asteroid's scars tell stories of its past









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.