Space Travel News  
SOLAR DAILY
New green materials could power smart devices using ambient light
by Staff Writers
London, UK (SPX) Nov 16, 2020

stock illustration only

We are increasingly using more smart devices like smartphones, smart speakers, and wearable health and wellness sensors in our homes, offices, and public buildings. However, the batteries they use can deplete quickly and contain toxic and rare environmentally damaging chemicals, so researchers are looking for better ways to power the devices.

One way to power them is by converting indoor light from ordinary bulbs into energy, in a similar way to how solar panels harvest energy from sunlight, known as solar photovoltaics. However, due to the different properties of the light sources, the materials used for solar panels are not suitable for harvesting indoor light.

Now, researchers from Imperial College London, Soochow University in China, and the University of Cambridge have discovered that new green materials currently being developed for next-generation solar panels could be useful for indoor light harvesting. They report their findings in Advanced Energy Materials.

Co-author Dr Robert Hoye, from the Department of Materials at Imperial, said: "By efficiently absorbing the light coming from lamps commonly found in homes and buildings, the materials we investigated can turn light into electricity with an efficiency already in the range of commercial technologies. We have also already identified several possible improvements, which would allow these materials to surpass the performance of current indoor photovoltaic technologies in the near future."

The team investigated 'perovskite-inspired materials', which were created to circumvent problems with materials called perovskites, which were developed for next-generation solar cells. Although perovskites are cheaper to make than traditional silicon-based solar panels and deliver similar efficiency, perovskites contain toxic lead substances. This drove the development of perovskite-inspired materials, which are instead based on safer elements like bismuth and antimony.

Despite being more environmentally friendly, these perovskite-inspired materials are not as efficient at absorbing sunlight. However, the team found that the materials are much more effective at absorbing indoor light, with efficiencies that are promising for commercial applications. Crucially, the researchers demonstrated that the power provided by these materials under indoor illumination is already sufficient to operate electronic circuits.

Co-author Professor Vincenzo Pecunia, from Soochow University, said: "Our discovery opens up a whole new direction in the search for green, easy-to-make materials to sustainably power our smart devices.

"In addition to their eco-friendly nature, these materials could potentially be processed onto unconventional substrates such as plastics and fabric, which are incompatible with conventional technologies. Therefore, lead-free perovskite-inspired materials could soon enable battery-free devices for wearables, healthcare monitoring, smart homes, and smart cities."


Related Links
Imperial College London
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
New machine learning program to accelerate clean energy generation
Melbourne, Australia (SPX) Nov 11, 2020
From 'The Terminator' and 'Blade Runner' to 'The Matrix', Hollywood has taught us to be wary of artificial intelligence. But rather than sealing our doom on the big screen, algorithms could be the solution to at least one issue presented by the climate crisis. Researchers at the ARC Centre of Excellence in Exciton Science have successfully created a new type of machine learning model to predict the power-conversion efficiency (PCE) of materials that can be used in next-generation organic solar cel ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
SOLAR DAILY
NASA's Curiosity takes selfie with 'Mary Anning' on the Red Planet

Independent Review Indicates NASA Prepared for Mars Sample Return Campaign

NASA's Perseverance Rover 100 Days Out

Review board says NASA, ESA ready to pursue Mars sample return mission

SOLAR DAILY
China's Chang'e-4 probe resumes work for 24th lunar day

NASA seeks new partners to help put all eyes on Artemis Moon missions

Orion is 'Fairing' Well and Moving Ahead Toward Artemis I

New mineral discovered in moon meteorite

SOLAR DAILY
Researchers model source of eruption on Jupiter's moon Europa

Radiation Does a Bright Number on Jupiter's Moon

New plans afoot beyond Pluto

Where were Jupiter and Saturn born?

SOLAR DAILY
NYUAD study finds stellar flares can lead to the diminishment of a planet's habitability

Radioactive elements may be crucial to the habitability of rocky planets

Maunakea telescopes confirm first brown dwarf discovered by radio observations

Water may be naturally occurring on all rocky planets

SOLAR DAILY
SpaceX launches four astronauts to ISS

SpaceX ready to taxi four up to Space Station

NASA, SpaceX delay launch of four astronauts into space to Sunday

SpaceX completes Falcon 9 static fire test for Crew Dragon launch

SOLAR DAILY
China Focus: 18 reserve astronauts selected for China's manned space program

State-owned space giant prepares for giant step in space

China's Xichang launch center to carry out 10 missions by end of March

Eighteen new astronauts chosen for China's space station mission

SOLAR DAILY
DESTINY+ as Germany and Japan begin new asteroid mission

Weighing space dust with radar

SwRI scientist studies tiny craters on Bennu boulders to understand asteroid's age

The craters on Earth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.