![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Washington DC (SPX) Oct 09, 2018
Researchers have developed a fundamentally new approach to a see-through display for augmented reality, or smart glasses. By projecting images from the glass directly onto the eye, the new design could one day make it possible for a user to see information such as directions or restaurant ratings while wearing a device almost indistinguishable from traditional glasses. "Rather than starting with a display technology and trying to make it as small as possible, we started with the idea that smart glasses should look and feel like normal glasses," said research team leader Christopher Martinez of the Laboratoire d'electronique des technologies de l'information (Leti) in France. "Developing our concept required a great deal of imagination because we eliminated the bulky optical components typically required and instead use the eye itself to form the image." In Optica, The Optical Society's journal for high-impact research, the authors detail their new retinal projection display concept and report positive results from initial optical simulations. Although glasses using this new approach wouldn't be useful for showing videos, they could provide information in the form of text or simple icons. "Although we are focused on augmented reality applications, the new display concept may also be useful for people with vision problems," said Martinez. "The disturbance present in the eye could be integrated into the projection, giving visually impaired people a way to see information such as text."
Forming an image in the eye According to the design concept this feat would be accomplished by sending photons from a laser or other light source through a light-guiding component into a holographic optical element created within the lens of the glasses. Holographic optical elements that are significantly smaller than their traditional counterparts can be made in light-sensitive plastics using the same laser light interactions that make holograms such as those that protect credit cards from forgery. For the concept to work, it is critical that all the projected photons have synchronized phases and match in coherence. Otherwise, a noisy image is formed, akin to what you would hear if the members of a choral group were singing the same song but starting and stopping at different times. The researchers used the holographic element to synchronize the phase, like a cue that helps the singers start at the same moment. "It is very complicated to use traditional methods such as a mask with an optical structure to adjust the phase of photon emitters that are separated from each other by just hundreds of microns," said Martinez. "Our design uses a unique holographic element to synchronize the photons by matching the phase with a reference beam." The design also includes a grid of lightguides that makes the photons coherent, akin to making sure the singers all sing at the same speed. This component was made using an integrated photonics approach that incorporates the same semiconductor fabrication techniques used to make computer chips and fabricate optical components in silicon. The researchers say that their display concept is an important example of the new opportunities for retinal projection that will now be possible thanks to recent developments in integrated photonics, which have moved from applications using telecommunication wavelengths into visible wavelengths that can be used in displays.
Seeing outside the box "Using a holographic element to form a retinal display is quite different from the traditional grid of pixels used for traditional displays," said Martinez. "For example, information could be projected to the left and right portions of the field of view with no information in between, without increasing the complexity of the display." A detailed optical simulation of the new design validated the new approach and revealed that a clearer image would be created if the points where light is emitted were arranged randomly rather than with a periodic pattern. The researchers are now figuring out how to best accomplish this random arrangement. They also point out that although the device should be safe because very little light will be needed to form the image on the eye, safety studies will be needed as development progresses. The researchers plan to make and test the individual components before creating a working prototype. The first prototype will display static monochromatic images, but the researchers are confident that the retinal projection approach can be used for a dynamic multi-color display.
Research Report: "See-Through Holographic Retinal Projection Display Concept"
![]() ![]() Apple chief says firm guards data privacy in China San Francisco (AFP) Oct 3, 2018 Apple chief executive Tim Cook on Tuesday said the company is devoted to protecting people's privacy, with data encrypted and locked away on servers even in China. Cook called privacy as one of the most important issues of this century, and maintained that the US-based technology colossus even safeguards data Chinese law requires it to keep stored in that country. "We worked with a Chinese company to provide iCloud," Cook said, referring to Apple's service for storing digital content in the inte ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |