Space Travel News
BIO FUEL
New catalyst transforms carbon dioxide into sustainable byproduct
stock illustration only
New catalyst transforms carbon dioxide into sustainable byproduct
by Staff Writers
Chicago IL (SPX) May 04, 2023

The need to capture CO2 and transport it for permanent storage or conversion into valued end uses is a national priority recently identified in the Bipartisan Infrastructure Law to move toward net-zero greenhouse gas emissions by 2050.

Now, Northwestern University researchers have worked with an international team of collaborators to create acetic acid out of carbon monoxide derived from captured carbon. The innovation, which uses a novel catalyst created in the lab of professor Ted Sargent, could spur new interest in carbon capture and storage.

"Carbon capture is feasible today from a technical point of view, but not yet from an economic point of view," Sargent said. "By using electrochemistry to convert captured carbon into products with established markets, we provide new pathways to improving these economics, as well as a more sustainable source for the industrial chemicals that we still need."

Sargent, the paper's corresponding author, is Northwestern's Lynn Hopton Davis and Greg Davis Professor of Chemistry at the Weinberg College of Arts and Sciences and a professor of electrical and computer engineering at the McCormick School of Engineering. His team has a track record of using electrolyzers - devices in which electricity drives a desired chemical reaction forward - to convert captured carbon into key industrial chemicals, including ethylene and propanol.

Though acetic acid may be most familiar as the key component in household vinegar, recent University of Toronto Ph.D. recipient Josh Wicks, one of the paper's four co-lead authors, said this use accounts for only a small proportion of what it's used for.

"Acetic acid in vinegar needs to come from biological sources via fermentation because it's consumed by humans," Wicks said. "But about 90% of the acetic acid market is for feedstock in the manufacture of paints, coatings, adhesives and other products. Production at this scale is primarily derived from methanol, which comes from fossil fuels."

Lifecycle assessment databases showed the team that for every kilogram of acetic acid produced from methanol, the process releases 1.6 kg of CO2.

Their alternative method takes place via a two-step process: first, captured gaseous CO2 is passed through an electrolyzer, where it reacts with water and electrons to form carbon monoxide (CO). Gaseous CO is then passed through a second electrolyzer, where another catalyst transforms it into various molecules containing two or more carbon atoms.

"A major challenge that we face is selectivity," Wicks said. "Most of the catalysts used for this second step facilitate multiple simultaneous reactions, which leads to a mix of different two-carbon products that can be hard to separate and purify. What we tried to do here was set up conditions that favor one product above all others."

Vinayak Dravid, another senior author on the paper and the Abraham Harris Professor of Materials Science and Engineering, is the founding director of the Northwestern University Atomic and Nanoscale Characterization (NUANCE) Center, which allowed the team to access diverse capabilities for atomic- and electronic-scale measurements of materials.

"Modern research problems are complex and multifaceted and require diverse yet integrated capabilities to analyze materials down to the atomic scale," Dravid said. "Colleagues like Ted present us with challenging problems that stimulate our creativity to develop novel ideas and innovative characterization methods".

The team's analysis showed that using a much lower proportion of copper (approximately 1%) compared with previous catalysts would favor the production of just acetic acid. It also showed that elevating the pressure to 10 atmospheres would enable the team to achieve record-breaking efficiency.

In the paper, the team reports a faradic efficiency of 91%, meaning that 91 out of every 100 electrons pumped into the electrolyzers end up in the desired product - in this case, acetic acid.

"That's the highest faradic efficiency for any multi-carbon product at a scalable current density we've seen reported," Wicks said. "For example, catalysts targeting ethylene typically max out around 70% to 80%, so we're significantly higher than that."

The new catalyst also appears to be relatively stable: while the faradic efficiency of some catalysts tend to degrade over time, the team showed that it remained at a high level of 85% even after 820 hours of operation.

Wicks hopes that the elements that led to the team's success - including a novel target product, a slightly increased reaction pressure, and a lower proportion of copper in the catalyst - inspire other teams to think outside the box.

"Some of these approaches go against the conventional wisdom in this field, but we showed that they can work really well," he said. "At some point, we're going to have to decarbonize all the elements of chemical industry, so the more different pathways we have to useful products, whether it's ethanol, propylene or acetic acid, the better."

Research Report:Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction

Related Links
Northwestern University
Bio Fuel Technology and Application News

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
BIO FUEL
3D-printed biodegradable seed robot can change shape in response to humidity
Genoa, Italy (SPX) Apr 20, 2023
A robot with the shape of a seed and with the ability to explore the soil based on humidity changes. It is made of biodegradable materials and able to move within the surrounding environment without requiring batteries or other external sources of energy. These are the main features of the first I-Seed, the first 3D-printed seed-robot created at the Istituto Italiano di Tecnologia (IIT-Italian Institute of Technology) in Genoa, by the researchers of Bioinspired Soft Robotics (BSR) Lab coordinated by Bar ... read more

BIO FUEL
BIO FUEL
Ensuring robotic arm safety during abrasions

Sols 3812-3813: Tiny Sticks Poking Out at Us

New findings indicate gene-edited rice might survive in Martian soil

Curiosity: Move slowly and don't break things: Sols 3810-3811

BIO FUEL
Fly me to the Moon: Firms lining up lunar landings

NASA extracts oxygen from lunar soil simulant

China lunar samples gifted to Russia, France

Hard landing: Japan firm fails in historic Moon bid

BIO FUEL
Juice's first taste of science from space

Icy Moonquakes: Surface Shaking Could Trigger Landslides

Europe's Jupiter probe launched

Europe's JUICE mission blasts off towards Jupiter's icy moons

BIO FUEL
Can ET detect us

Scientists discover rare element in exoplanet's atmosphere

UGA researchers discover new planet outside solar system

TESS celebrates fifth year scanning the sky for new worlds

BIO FUEL
SpaceX launches first expendable Falcon Heavy rocket

A second pair of SES' O3b mPower satellites launched on a SpaceX rocket

Heavy thunderstorms force SpaceX to delay launch of Falcon Heavy rocket

Fish and Wildlife: SpaceX Starship debris covered 350 acres, no wildlife killed

BIO FUEL
China to promote space science progress on five themes

China to develop satellite constellation for deep space exploration

China's space missions break new ground

Space exploration for betterment of humankind

BIO FUEL
SOHO chases asteroid's tail

Asteroid's comet-like tail is not made of dust, solar observatories reveal

What colour is an asteroid? Hyperspectral imager to find out

China to launch Tianwen 2 mission to explore asteroid

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.