Space Travel News  
SOLAR DAILY
New advances in solar cell technology
by Staff Writers
Onna, Japan (SPX) Oct 06, 2016


This is a comparison of grain boundaries in MAPbI3 perovskite films following thermal annealing (a), DMF solvent annealing (b), and methylamine post annealing treatment. The methylamine post annealing treatment shows the most improvement, as the grain boundaries become fused and less defined after application. Image courtesy Yan Jiang. For a larger version of this image please go here.

With the high environmental cost of conventional energy sources and the finite supply of fossil fuels, the importance of renewable energy sources has become much more apparent in recent years. However, efficiently harnessing solar energy for human use has been a difficult task. While silicon-based solar cells can be used to capture sunlight energy, they are costly to produce on an industrial scale. Research from the Energy Materials and Surface Sciences Unit at the Okinawa Institute of Science and Technology Graduate University (OIST), led by Prof. Yabing Qi, has focused on using organo-metal halide perovskite films in solar cells.

These perovskite films are highly crystalline materials that can be formed by a large number of different chemical combinations and can be deposited at low cost. Recent publications from Prof. Qi's lab cover three different areas of innovation in perovskite film research: a novel post annealing treatment to increase perovskite efficiency and stability, a discovery of the decomposition products of a specific perovskite, and a new means of producing perovskites that maintains solar efficiency when scaled up.

In order to be useful as solar cells, perovskite films must be able to harvest solar energy at a high efficiency that is cost-effective, be relatively easy to manufacture, and be able to withstand the outdoor environment over a long period of time.

Dr. Yan Jiang in Prof. Qi's lab has recently published research in Materials Horizons that may help increase the solar efficiency of the organo-metal halide perovskite MAPbI3. He discovered that the use of a methylamine solution during post-annealing led to a decrease in problems associated with grain boundaries. Grain boundaries manifest as gaps between crystalline domains and can lead to unwanted charge recombination.

This is a common occurrence in perovskite films and can reduce their efficiency, making the improvement of grain boundary issues essential to maintain high device performance. Dr. Jiang's novel post annealing treatment produced solar cells that had fused grain boundaries, reduced charge recombination, and displayed an outstanding conversion efficiency of 18.4%. His treated perovskite films also exhibited exceptional stability and reproducibility, making his method useful for industrial production of solar cells.

One of the biggest disadvantages to the use of perovskites when compared to silicon in solar cells is their relatively short lifespan. In order to create a solar cell that can withstand the outdoor environment over a long period of time, it is crucial to determine the major products of perovskite decomposition. Previous research on MAPbI3 perovskite films led to the conclusion that the gas products of thermal degradation of this material were methylamine (CH3NH2) and hydrogen iodide (HI).

However, exciting new research from Dr. Emilio J. Juarez-Perez, also in Prof. Qi's lab, published in Energy and Environmental Science, shows that major gas products of degradation are methyliodide (CH3I) and ammonia (NH3) instead. Dr. Juarez-Perez used a combination of thermal gravimetric differential thermal analysis (TG-DTA) and mass spectrometry (MS) to correctly determine both the mass loss and chemical nature of these products. Because the products of decomposition have now been correctly identified, researchers can look for ways to prevent degradation of the material, leading to more stable materials for use in the future.

A pervasive problem in academic research is often the inability to scale up experiments for use in industry. While perovskite films can be made with relative ease on a small scale in the laboratory, they can be difficult to replicate on the large scale needed for mass production. New research from Dr. Matthew Leyden in the Journal of Materials Chemistry A has the potential to make industrial production of perovskites much easier. His work uses chemical vapor deposition, a cost-effective process commonly used in industry, to create large solar cells and modules of FAPbI3 perovskites>

This is one of the first demonstrations of perovskite solar cells and modules fabricated by a method widely employed in industry, making the mass production of perovskite films more feasible. The solar cells and modules produced are significantly larger, e.g., 12 cm2, than those commonly studied in academia, typically <0.3cm2. These solar modules show enhanced thermal stability and relatively high efficiencies, which is impressive as many perovskite solar cells lose efficiency drastically as they are scaled up, making this type of research useful for commercial purposes.

Research from Prof. Qi's research unit has brought perovskite solar cells one step closer to mass production by providing solutions to problems of efficiency, life-span, and scalability. With more exciting research on the horizon, the unit is bringing the dream of utilizing cost-effective renewable energy resources into reality.

Research paper


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Okinawa Institute of Science and Technology (OIST) Graduate University
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SOLAR DAILY
Global grand challenge strategy needed to develop clean energy
Toronto, Canada (SPX) Oct 06, 2016
In a comment in this week's science journal Nature, an international group of researchers from nine countries call for a grand challenges strategy to set global priorities for developing renewable energy. The authors argue that greenhouse gas emissions are not dropping fast enough to meet even the modest goals set out in last year's Paris Agreement on climate change. They call for a target ... read more


SOLAR DAILY
ULA gets $860 million contract modification for expendable launch vehicle

Ariane 5 reaches the launch zone for Arianespace's October 4 liftoff

Rocket launch site to open up New Zealand space industry: Minister

NASA develops satellite concept to exploit rideshare opportunities

SOLAR DAILY
Yorkshire salt mine could help shed light on Martian life

NASA's Curiosity Rover Begins Next Mars Chapter

Pioneering Space Requires Living Off the Land in the Solar System

Unusual Martian region leaves clues to planet's past

SOLAR DAILY
Exploration Team Shoots for the Moon with Water-Propelled Satellite

Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

SOLAR DAILY
Shedding light on Pluto's glaciers

Chandra detects low-energy X-rays from Pluto

Scientists discover what extraordinary compounds may be hidden inside Jupiter and Neptune

New Horizons Spies a Kuiper Belt Companion

SOLAR DAILY
The death of a planet nursery?

Protoplanetary Disk Around a Young Star Exhibits Spiral Structure

New Low-Mass Objects Could Help Refine Planetary Evolution

Pluto's heart sheds light on a possible buried ocean

SOLAR DAILY
Welding on massive fuel tank for first flight of SLS completed

Work underway on hardware that will do double duty on first SLS flight

Ascent Trajectories and the Gravity Turn

Major construction complete on first Space Launch System test stand

SOLAR DAILY
Beijing exhibition means plenty of "space" for everyone

Space for Shenzhou 11

Waiting for Shenzhou 11

Tiangong-2 space lab enters preset orbit for docking with manned spacecraft

SOLAR DAILY
Rosetta's comet adventure in numbers

Farewell Rosetta: ESA Mission to Conclude on Comet's Surface

Alice Ultraviolet Spectrograph Completes Rosetta Mission to Comet 67P

Rosetta measures production of water at comet over two years









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.