Space Travel News  
ENERGY TECH
New Transistors: An Alternative To Silicon And Better Than Graphene

This is a digital model showing how molybdenite can be integrated into a transistor. Credit: Credit: EPFL
by Staff Writers
Lausanne, Switzerland (SPX) Feb 01, 2011
Smaller and more energy-efficient electronic chips could be made using molybdenite. In an article appearing online January 30 in the journal Nature Nanotechnology, EPFL's Laboratory of Nanoscale Electronics and Structures (LANES) publishes a study showing that this material has distinct advantages over traditional silicon or graphene for use in electronics applications.

A discovery made at EPFL could play an important role in electronics, allowing us to make transistors that are smaller and more energy efficient.

Research carried out in the Laboratory of Nanoscale Electronics and Structures (LANES) has revealed that molybdenite, or MoS2, is a very effective semiconductor. This mineral, which is abundant in nature, is often used as an element in steel alloys or as an additive in lubricants. But it had not yet been extensively studied for use in electronics.

100,000 times less energy
"It's a two-dimensional material, very thin and easy to use in nanotechnology. It has real potential in the fabrication of very small transistors, light-emitting diodes (LEDs) and solar cells," says EPFL Professor Andras Kis, whose LANES colleagues M. Radisavljevic, Prof. Radenovic et M. Brivio worked with him on the study.

He compares its advantages with two other materials: silicon, currently the primary component used in electronic and computer chips, and graphene, whose discovery in 2004 earned University of Manchester physicists Andre Geim and Konstantin Novoselov the 2010 Nobel Prize in Physics.

One of molybdenite's advantages is that it is less voluminous than silicon, which is a three-dimensional material. "In a 0.65-nanometer-thick sheet of MoS2, the electrons can move around as easily as in a 2-nanometer-thick sheet of silicon," explains Kis. "But it's not currently possible to fabricate a sheet of silicon as thin as a monolayer sheet of MoS2."

Another advantage of molybdenite is that it can be used to make transistors that consume 100,000 times less energy in standby state than traditional silicon transistors. A semi-conductor with a "gap" must be used to turn a transistor on and off, and molybdenite's 1.8 electron-volt gap is ideal for this purpose.

Better than graphene
In solid-state physics, band theory is a way of representing the energy of electrons in a given material. In semi-conductors, electron-free spaces exist between these bands, the so-called "band gaps." If the gap is not too small or too large, certain electrons can hop across the gap. It thus offers a greater level of control over the electrical behavior of the material, which can be turned on and off easily.

The existence of this gap in molybdenite also gives it an advantage over graphene. Considered today by many scientists as the electronics material of the future, the "semi-metal" graphene doesn't have a gap, and it is very difficult to artificially reproduce one in the material.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Ecole Polytechnique Federale de Lausanne
Powering The World in the 21st Century at Energy-Daily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


ENERGY TECH
New Reactor Paves The Way For Efficiently Producing Fuel From Sunlight
Pasadena CA (SPX) Jan 21, 2011
Using a common metal most famously found in self-cleaning ovens, Sossina Haile hopes to change our energy future. The metal is cerium oxide-or ceria-and it is the centerpiece of a promising new technology developed by Haile and her colleagues that concentrates solar energy and uses it to efficiently convert carbon dioxide and water into fuels. Solar energy has long been touted as the solut ... read more







ENERGY TECH
ISRO Awaits Data On GSLV Failure

BrahMos Aerospace To Make Cryogenic Engines For Indian Rockets

Activities At Esrange Space Center 2011

Russia Plans To Build Carrier Rocket For Mars Missions

ENERGY TECH
Rover Conducting Science At Crater Rim

New images of martian moon released

DLR Researchers Simulate The Martian Atmosphere

The Southern Hemisphere Of Phobos, Up Close

ENERGY TECH
NASA's New Lander Prototype Skates Through Integration And Testing

Draper Commits One Million Dollars To Next Giant Leap's Moon Lander

Lunar water may have come from comets - scientists

Moon Has Earth-Like Core

ENERGY TECH
Launch Plus Five Years: A Ways Traveled, A Ways To Go

Mission To Pluto And Beyond Marks 10 Years Since Project Inception

ENERGY TECH
Inclined Orbits Prevail

Inclined Orbits Prevail In Exoplanetary Systems

Planet Affects A Star's Spin

Kepler Mission Discovers Its First Rocky Planet

ENERGY TECH
NASA Testing Of Commercial Engine Flies High

Removal From US Entity List Not Enough

Two Rockets Set To Launch From Poker Flat Research Range

Japanese rocket puts cargo into orbit

ENERGY TECH
Slow progress in U.S.-China space efforts

China Builds Theme Park In Spaceport

Tiangong Space Station Plans Progessing

China-Made Satellite Keeps Remote Areas In Venezuela Connected

ENERGY TECH
NASA Comet Hunter Spots Its Valentine

Asteroids Ahoy! Jupiter Scar Likely From Rocky Body

More Asteroids Could Have Made Life's Ingredients

NASA Spacecraft Prepares For Valentine's Day Comet Rendezvous


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement