Space Travel News  
New Screening Method To Help Find Better Biofuel Crops

Analytical chemist Emily Smith specifically plans to screen the lignin, hemicellulose and cellulose content of biofuel plant stocks, such as switchgrass, Miscanthus (a subtropical perennial grass that can grow 13 feet high), corn, and poplar and willow trees. Lignin interferes with enzymatic conversion of polysaccharides to ethanol, so Smith will use the imaging to help select plant stocks that have low lignin content.
by Staff Writers
Ames IA (SPX) Jun 11, 2007
Skyrocketing gasoline prices and growing concern over global warming has spawned massive growth of the biofuel industry, particularly ethanol production. While corn has been the major raw material for producing ethanol, producers are looking for other more cost effective and sustainable crops and researchers at the U.S. Department of Energy's Ames Laboratory are looking at a novel way to help them determine what type of plant material offers the best solution.

Analytical chemist Emily Smith plans to use Raman imaging to study plant cell structure to determine which crops offer the right combination of cell wall composition and degradation to maximize the materials' conversion to ethanol. If successful, a simplified version of the test could even be used in the field to determine if plants were at the prime stage for harvest.

"Just like vintners monitor and test the sugar content of their grapes in the field, biofuel producers could potentially use this technology to determine if their crop was at optimal development for conversion to ethanol," said Smith, who is also an Iowa State University assistant professor of chemistry.

The Raman technique Smith uses employs an optical microscope, and specimens are illuminated with a laser beam. As the laser light hits the sample, some of the light is scattered. By analyzing the scattered light with a spectrometer (spectroscope), Smith can easily and quickly determine the chemical makeup of the plant material. A fiber optic bundle placed between the microscope and the spectrometer allows a direct measure of the chemical makeup at any location on the sample being viewed on the microscope.

"This method has several advantages over other analytical techniques," Smith explained. "First, analysis requires very little material so you can take small samples from a growing plant over time without damaging the plant." This also makes the technique high-throughput.Because only very small pieces of plant material are needed and little time is required to prepare samples, multiple samples can be analyzed quickly.

Smith specifically plans to screen the lignin, hemicellulose and cellulose content of biofuel plant stocks, such as switchgrass, Miscanthus (a subtropical perennial grass that can grow 13 feet high), corn, and poplar and willow trees. Lignin interferes with enzymatic conversion of polysaccharides to ethanol, so Smith will use the imaging to help select plant stocks that have low lignin content.

"We hope to find out if lignin content changes over time, with different growing conditions, or with different stock material," Smith said, "so we can determine if there is an optimal time to harvest a particular crop."

Plant material for the project will be provided by collaborator Ken Moore, Iowa State University agronomy professor and expert in biomass crop systems.

While the scope of this project will be used to study biofuel crops, Smith said the technology could also be used to study other plant materials, such as those used for pharmaceuticals.

Smith has been using the Raman imaging technology to study animal and insect proteins and said it wasn't a "big leap" to study plant material.

"There is obviously a lot of interest in biofuels right now," she said. "Given the number of good researchers on campus working in this area, it was an easy decision to get involved in this project."

Smith's work is being jointly funded through a two-year grant from ISU's Plant Science Institute and by the DOE's Office of Basic Energy Sciences. George Kraus, Ames Laboratory's Director of Bio-related Initiatives, called the collaboration a great first step.

"This is a wonderful opportunity to bring the technological expertise of Ames Lab researchers to bear in solving a problem that's a roadblock to moving biofuels to the next level," Kraus said. "We hope to be a partner in similar projects in the future so that other researchers can take advantage of the capabilities that exist within Ames Laboratory."

Related Links
Ames Laboratory
Powering The World in the 21st Century at Energy-Daily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Malaysia On Palmoil Charm Offensive In Europe
Brussels (AFP) June 06, 2007
Malaysia, a leading palm oil producer, sought Wednesday to dispel concerns in Europe that palm oil plantations endanger tropical forests. Malaysia and Indonesia are leading a campaign to fight environmentalist claims that the plantations destroy vast swathes of tropical forest, pushing endangered animals like the orangutan towards extinction.







  • Boston Harbor Angels Invests In XCOR Aerospace
  • Successful Design Review And Engine Test Bring Boeing X-51A Closer To Flight
  • ATK Conducts Successful Test Firing Of Space Shuttle Reusable Solid Rocket Motor
  • Progress Being Made On Next US Man-Rated Spacecraft

  • Delta 2 Launch To Launch COSMO-SkyMed Satellite
  • Russia Launches Four Satellites Into Orbit For Globalstar
  • Proton-M Carrier With US Telecom Satellite To Lift Off In June
  • Arianespace Maintains Launch Campaign Pace As Another Ariane 5 GEO Truck Takes Form

  • Astronauts Prepare For EVA Following Docking
  • NASA Sets Hubble Mission Launch For September 2008
  • NASA Launches Space Shuttle Atlantis
  • Atlantis Ready For First Shuttle Flight Of The Year

  • Third Pair Of Massive Solar Arrays To Be Launched To Space Station
  • Space Station Holed By Meteorite, Crew Complete EVA To Install Debris Shields
  • Cosmonauts To Install More Debris Panels On Wednesday Spacewalk
  • NASA Cutting Crew Holds It Together For Safe Delivery To Station

  • Vignette Helps NASA Make Giant Leap To The Moon And Beyond
  • Star Trek Fans Beam Into Canadian Wild West
  • Fourteen Space Agencies Sign Joint Exploration Agreement
  • Science Subcommittees Focus On Ensuring Health And Vitality Of NASA Workforce

  • China Launches Satellite To Take TV Signal Nationwide
  • China Launches Communications Satellite SinoSat-3
  • China Aims To Launch Moon Probe This Year
  • China Approves Five-Year Space Development plan

  • Saving Robots To Save Battlefield Lives
  • Rescue Robot Tests To Offer Responders High-Tech Help
  • Robot Joins Nursing School Faculty
  • A Robot Is Built To Rescue Soldiers

  • The Viability Of Methane-Producing Microorganisms In Simulated Martian Soils
  • Taking The Opportunity To Check New Driving Capabilities
  • THEMIS Marks A Milestone In The Imaging Of Mars
  • HiRISE Releases Thouands Of New Images Of Mars Via New Website Viewer

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement