Space Travel News  
New Picture Of Lower Mantle Emerges From Laboratory Studies

Earth's mantle is a layer that extends from the bottom of the crust, about 25 miles down, to the planet's core, 1,800 miles deep. Scientists divide the mantle into two layers separated by a wide transition zone centered around a depth of about 300 miles. The lower mantle lies below that zone.
by Staff Writers
Tempe AZ (SPX) Jun 22, 2007
Laboratory measurements of a high-pressure mineral believed to exist deep within the Earth show that the mineral may not, as geophysicists hoped, have the right properties to explain a mysterious layer lying just above the planet's core. A team of scientists, led by Sebastien Merkel, of the University of California, Berkeley, made the first laboratory study of the deformation properties of a high-pressure silicate mineral named post-perovskite. The work appears in the June 22 issue of the scientific journal Science.

The team included Allen McNamara of Arizona State University's School of Earth and Space Exploration, part of the College of Liberal Arts and Sciences. McNamara, a geophysicist, modeled the stresses the mineral would typically undergo as convection currents deep in Earth's mantle cause it to rise and sink. Also on the team were Atsushi Kubo and Thomas S. Duffy, Princeton University; Sergio Speziale, Lowell Miyagi and Hans-Rudolf Wenk, University of California, Berkeley; and Yue Meng, HPCAT, Carnegie Institution of Washington, Argonne, Ill.

"This the first time the deformation properties of this mineral have been studied at lower mantle temperatures and pressures," says McNamara. "The goal was to observe where the weak planes are in its crystal structure and how they are oriented." The results of the combined laboratory tests and computer models, he says, show that post-perovskite doesn't fit what is known about conditions in the lowermost mantle.

Earth's mantle is a layer that extends from the bottom of the crust, about 25 miles down, to the planet's core, 1,800 miles deep. Scientists divide the mantle into two layers separated by a wide transition zone centered around a depth of about 300 miles. The lower mantle lies below that zone.

Most of Earth's lower mantle is made of a magnesium silicate mineral called perovskite. In 2004, earth scientists discovered that under the conditions of the lower mantle, perovskite can change into a high-pressure form, which they dubbed post-perovskite. Since its discovery, post-perovskite has been geophysicists' favorite candidate to explain the composition of a mysterious layer that forms the bottom of Earth's lower mantle.

Known to earth scientists as D" (dee-double-prime), this layer averages 120 miles thick and lies directly above Earth's core. D" was named in 1949 by seismologist Keith Bullen, who found the layer from the way earthquake waves travel through the planet's interior. But the nature of D" has eluded scientists since Bullen's discovery.

"Our team found," says McNamara, "that while post-perovskite has some properties that fit what's known about D", our laboratory measurements and computer models show that post-perovskite doesn't fit one particular essential property." That property is seismic anisotropy, he says, referring to the fact that earthquake waves passing through D" become distorted in a characteristic way.

McNamara explains, "Down in the D" layer, the horizontal part of earthquake waves travel faster than the vertical parts. But in our laboratory measurements and models, post-perovskite produces an opposite effect on the waves."

He adds, "This appears to be a basic contradiction."

McNamara notes that the laboratory measurements, made by team members at Princeton University, were extremely difficult. They involved crushing tiny samples of perovskite on a diamond anvil until they changed into post-perovskite. Then the scientists shot X-rays through the samples to identify the mineral crystals' internal structure.

This information was used by other team members at the University of California, Berkeley, to model how these crystals would deform as the mantle flows. The deformation results let the scientists predict how the crystals would affect seismic waves passing through them.

McNamara's work modeled the slow churn of the mantle, in which convection currents in the rock rise and fall about as fast as fingernails grow, roughly an inch a year. He calculated stresses, pressures and temperatures to draw a detailed picture of where post-perovskite would be found. This let him profile the structure of the D" layer.

"All these computations have been in two dimensions," he says. "Our next step is to go to 3-D modeling."

Does their work rule out post-perovskite to explain the D" layer? "Not completely," says McNamara. "We've begun to study this newly found mineral in the laboratory, but the work isn't yet over."

He adds, "It's possible that post-perovskite does exist in the lowermost mantle, and another mineral is causing the seismic anisotropy we see there."

Related Links
Arizona State University
Dirt, rocks and all the stuff we stand on firmly



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Arizona Geophysicists Detect A Molten Rock Layer Deep Below The American Southwest
Tempe AZ (SPX) Jun 21, 2007
A sheet of molten rock roughly 10 miles thick spreads underneath much of the American Southwest, some 250 miles below Tucson, Ariz. From the surface, you can't see it, smell it or feel it. But Arizona geophysicists Daniel Toffelmier and James Tyburczy detected the molten layer with a comparatively new and overlooked technique for exploring the deep Earth that uses magnetic eruptions on the sun.







  • Air Force Continues Northrop Grumman Contract For Upper Stage Engine Program
  • World's Largest Vacuum Chamber To Test Orion
  • China To Increase Payload Capacity Of Carrier Rockets
  • SpaceDev, SpaceHab And Constellation Services Sign NASA Space Act Agreements

  • Arianespace Winning Launch Contracts From Across The World
  • 2006 Bumper Year For Satellite Launcher Arianespace
  • SES Signs For Five ILS Protons Through 2013
  • ILS Wins Arabsat-5A Contract To Launch On Proton Breeze M

  • Space Shuttle Lands Back On Earth
  • Bad Weather Pushes STS-117 Landing To Friday
  • Storm Front Could Delay Atlantis Return
  • Astronauts Set For Return To Earth On Shuttle Atlantis

  • Station And Shuttle Crews Close Hatches And Prep For Undocking Tuesday
  • STS-117 Shuttle Crew Conduct Fourth And Final Spacewalk About Space Station
  • Astronauts Fix Computers On ISS And Repair Shuttle Thermal Blanket
  • Computer Woes Strike International Space Station

  • Spaceport Closer To Breaking Ground
  • NASA Nanotechnology Space Sensor Test Successful In Orbit
  • Suni Williams Sets New Record For Women In Space
  • EADS To Offer Tourist Spacecraft By 2012

  • China To Launch Third Sino-Brazilian Satellite In September
  • China Launches Satellite To Take TV Signal Nationwide
  • China Launches Communications Satellite SinoSat-3
  • China Aims To Launch Moon Probe This Year

  • Japanese Humanoid Is Working In The Rain
  • Japanese Robot Receptionists For Hire
  • Japanese Researchers Help Robots Brush Up Communication Skills
  • Guessing Robots Predict Their Environments For Better Navigation

  • Mars Experiment To Push Mental Endurance To The Limit
  • Spirit Gets A Solar Panel Spring Clean
  • ESA Wants Space Pioneers For 520-Day Mars Experiment
  • An Opportunity To Take A Captain Cook At Duck Bay

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement