Space Travel News  
ROCKET SCIENCE
New Materials Architectures Sought to Cool Hypersonic Vehicles
by Staff Writers
Washington DC (SPX) Dec 21, 2018

DARPA's Materials Architectures and Characterization for Hypersonics (MACH) program seeks new materials and designs for cooling the hot leading edges of hypersonic vehicles traveling more than five times the speed of sound.

Hypersonic vehicles fly through the atmosphere at incredibly high speeds, creating intense friction with the surrounding air as they travel at Mach 5 or above - five times faster than sound travels. Developing structures that can withstand furnace-like temperatures at such high speeds is a technical challenge, especially for leading edges that bear the brunt of the heat.

To address this thermal challenge, DARPA recently announced its Materials Architectures and Characterization for Hypersonics (MACH) program. The MACH program seeks to develop and demonstrate new design and material solutions for sharp, shape-stable, cooled leading edges for hypersonic vehicles.

"For decades people have studied cooling the hot leading edges of hypersonic vehicles but haven't been able to demonstrate practical concepts in flight," said Bill Carter, program manager in DARPA's Defense Sciences Office.

"The key is developing scalable materials architectures that enable mass transport to spread and reject heat. In recent years we've seen advances in thermal engineering and manufacturing that could enable the design and fabrication of very complex architectures not possible in the past. If successful, we could see a breakthrough in mitigating aerothermal effects at the leading edge that would enhance hypersonic performance."

The MACH program will comprise two technical areas. The first area aims to develop and mature fully integrated passive thermal management system to cool leading edges based on scalable net-shape manufacturing and advanced thermal design.

The second technical area will focus on next-generation hypersonic materials research, applying modern high-fidelity computation capabilities to develop new passive and active thermal management concepts, coatings and materials for future cooled hypersonic leading edge applications. Both technical areas will be described in a Broad Agency Announcement solicitation expected in mid-January 2019 on DARPA's FedBizOpps page here.

The MACH program seeks expertise in thermal engineering and design, advanced computational materials development, architected materials design, fabrication and testing (including net shape fabrication of high temperature metals, ceramics and their composites), hypersonic leading-edge design and performance, and advanced thermal protection systems.

A Proposers Day describing the program will take place January 22, 2019 in Arlington, Virginia.

Registration details for Proposers Day are available here.


Related Links
Defense Advanced Research Projects Agency
Rocket Science News at Space-Travel.Com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ROCKET SCIENCE
NZ-Dutch space startup raises 3M dollars
Auckland NZ (SPX) Dec 21, 2018
Dawn Aerospace, a New Zealand-Dutch startup building 100% reusable rockets for satellite delivery, has this week raised $3.35m (NZD) of investment from Kiwi, American and Dutch investors. The money will be used to commercialise its world-leading satellite propulsion systems and begin development of it's Mk-II Spaceplane. The company makes reusable rockets designed to carry small satellites into space. Each rocket is designed to be indefinitely reusable and capable of multiple flights per d ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROCKET SCIENCE
ROCKET SCIENCE
InSight places its first instrument on Mars

InSight Engineers Have Made a Martian Rock Garden

Opportunity team performs more frequent communication attempts throughout each day

Planetary scientists assist in capturing image of Insight from orbit

ROCKET SCIENCE
Israeli spacecraft gets special passenger before moon journey

NASA seeks US partners to develop reusable systems to land astronauts on Moon

Learning from lunar lights

China launches rover for first far side of the moon landing

ROCKET SCIENCE
NASA spacecraft hurtles toward historic New Year's flyby

Teledyne e2v has provided New Horizons with two specialist image sensors

New Horizons Notebook: On Ultima's Doorstep

Ultima Thule's First Mystery: Lack of a 'Light Curve'

ROCKET SCIENCE
Narrowing the universe in the search for life

A young star caught forming like a planet

Planets with Oxygen Don't Necessarily Have Life

Where did the hot Neptunes go

ROCKET SCIENCE
Arianespace supports Drance and European defense with launch of CSO-1

SpaceX blasts off powerful GPS satellite for US military

Russia to Complete Flight Tests of Soyuz-2.1V Carrier Rocket in 2019 - Source

Roscosmos selects super-heavy rocket concept designed for lunar flights

ROCKET SCIENCE
China launches first Hongyun project satellite

China's Chang'e-4 probe enters lunar orbit

China launches rover for first far side of the moon landing

Evolving Chinese Space Ecosystem To Foster Innovative Environment

ROCKET SCIENCE
ALMA gives passing comet its close-up

Space telescope detects water in a number of asteroids

Las Cumbres builds new instrument to study December comet

GMV leads the system that "drives" the HERA mission for planetary defence









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.