. Space Travel News .




.
CIVIL NUCLEAR
New Integrated Building Model to Improve Success of Fish Farming Operations
by Staff Writers
Amherst, MA (SPX) Feb 14, 2012

The need for local aquaculture is clear, he and fellow UMass Amherst Building-Integrated Aquaculture Working Group members James Webb and green building expert Simi Hoque point out. Due to declining wild fish stocks and environmental degradation, fish farms now account for nearly 40 percent of the world's total fisheries production and it's growing.

Today's "locavore" movement with its emphasis on eating more locally-produced food is a natural fit for fruits and vegetables in nearly every region, but few entrepreneurs have dared to apply the concept to fish farming. Those who have ventured to turn a vacant barn or garage into an aquaculture business have too often been defeated by high energy and feed costs, building-related woes and serious environmental problems, says aquaculture researcher Andy Danylchuk at the University of Massachusetts Amherst.

Now he and colleagues are melding building design, fish ecology and aquaculture engineering techniques into a first-of-its-kind "building-integrated aquaculture" (BIAq) model to offer an affordable, more holistic and sustainable approach to indoor fish production located close to markets and able to succeed even in cold climates. Their ideas are outlined in the current issue of ASHRAE Journal, published by the American Society of Heating, Refrigerating and Air-Conditioning Engineers.

As Danylchuk explains, typically when a small-scale entrepreneur starts up an aquaculture operation, he or she installs tanks and plumbing in an old chicken barn, for example. "But that's like building a house with no regard for the occupants' comfort or their utility budget," he says. In fact, studies show over 75 percent of total energy demands in the United States are due to building operations.

"Our team began looking at renewable energy systems to make power more affordable, and how fish farm waste streams can become plant food rather than an environmental headache. If you start by taking the building into consideration, these operations might actually become economically feasible," the fish ecologist adds.

The need for local aquaculture is clear, he and fellow UMass Amherst Building-Integrated Aquaculture Working Group members James Webb and green building expert Simi Hoque point out. Due to declining wild fish stocks and environmental degradation, fish farms now account for nearly 40 percent of the world's total fisheries production and it's growing.

Further, "while per capita seafood consumption has already reached record levels in the United States, recent USDA recommendations suggest more than twice this amount for a healthy lifestyle. Achieving this goal represents a significant challenge considering approximately 85 percent of U.S. seafood is imported and nearly half of this comes from overseas aquaculture production." These imports are tainted by food security and quality issues as well as considerable environmental drawbacks and financial costs of global transportation.

The BIAq team therefore set out to design a practical model for small businesses to help them produce good quality, local seafood with a modest investment of cash, low energy use, low greenhouse gas emissions, low waste/environmental damage and at prices consumers can afford. Their model dovetails systems to maximize energy efficiency and aquaculture operations by simultaneously addressing humidity, condensation, airflow, water flow, waste stream recovery, passive and renewable energy and worker health and safety.

For example, the BIAq model calls for recirculating fish tank wastewater through a step-wise filter system to remove waste and food residue and re-use the dissolved carbon, nitrogen and phosphorous nutrients as fertilizer in a hydroponic garden. In this way, wastewater is cleaned and recirculated back to the fish, while supporting a cash-crop such as herbs or garden greens attractive to consumers, and diverting wastewater from the environment.

Using a solar water-heating system can dramatically cut energy costs, as well. Another synergistic benefit can be gained by using heat pumps and exchangers, package refrigeration and condensation units to complement each other in controlling humidity and warming the atmosphere in an operation that is water-vapor intensive. Even small changes such as locating supply air ducts to the ceiling to allow air to move over interior walls helps to prevent moisture accumulation and mitigate high humidity, the authors point out.

"We identify areas where a BIAq approach might increase efficiency and reduce operating costs. Our focus is on processes and design decisions that have the greatest potential for energy conservation in the heavily populated temperate regions of the world." They add, "Climate control is a major challenge for indoor recirculating aquaculture systems, and continuing to ignore the design of the building envelope will result in inefficiencies and higher costs."

The authors hope that framing the development of recirculating aquaponics facilities as a holistic and synergistic systems-based endeavor will enable a robust analysis of the environmental, social and economic benefits that will make fish production more sustainable.

Related Links
UMass Amherst
Nuclear Power News - Nuclear Science, Nuclear Technology
Powering The World in the 21st Century at Energy-Daily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries



And it's 3... 2... 1... blastoff! Discover the thrill of a real-life rocket launch.



.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



FLORA AND FAUNA
Understanding Patterns Of Seafloor Biomass
Liverpool UK (SPX) Feb 16, 2011
The vast majority of the biological production in the world's oceans occurs within sunlit surface waters - the so-called photic zone. Through the process of photosynthesis, tiny marine plants called phytoplankton use the energy of sunlight to build the carbon-rich organic molecules needed for growth. When they die, a proportion of the organic matter sinks to the ocean depths, where it is used as ... read more


FLORA AND FAUNA
Europe delighted as new rocket notches up success

NASA Seeks Game Changing Technology Payloads for Suborbital Research Flights

Rockot to launch two Sentinel satellites

April new date for SpaceX capsule launch

FLORA AND FAUNA
No future for Mars?

Scientists say Obama Mars cuts to hit research

Venezuela Mars mission after 2030

Obama budget slashes Mars exploration

FLORA AND FAUNA
China publishes high-resolution full moon map

FLORA AND FAUNA
New Horizons on Approach: 22 AU Down, Just 10 to Go

FLORA AND FAUNA
FLORA AND FAUNA
Europe stakes billion-dollar bet on new rocket

Birthday Cake for X-37B

FLORA AND FAUNA
Space-tracking ship Yuanwang VI concludes trip

China's new rockets expected to debut within five years

FLORA AND FAUNA

Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement