Space Travel News  
MICROSAT BLITZ
New Covid-19 norms foster agile smallsat innovation
by Staff Writers
Washington DC (SPX) Jun 18, 2020

Aerospace's new approach to the AeroCube laser alignment process is testimony to its continued dedication to innovation and forward-thinking solutions for the space domain, and indicative of its proven ability to not only meet the challenges of an ever-changing industry, but also rapidly adjust operational standards to meet or exceed mission-critical needs and expectations.

The COVID-19 pandemic and the ensuing wide-scale safer-at-home order responses have made it abundantly clear that a return to "business as usual" may never happen. This "new normal" will require new, innovative methods of providing services that can be implemented quickly, dynamically, and often remotely.

In spite of the challenges presented by COVID-19 and social distancing mandates, The Aerospace Corporation has adjusted seamlessly across the enterprise in adapting to current conditions. A prime example can be found in Aerospace's AeroCube smallsat operations team, which is continuing to provide unabated spacecraft commissioning despite having a significantly reduced on-site workforce.

In addition, other aspects of the AeroCube program are being quickly reconfigured to enable a teleworking team to provide the same services that have up until recently been provided by local staff.

More importantly, this new standard may lead to improved operational methods that augment how Aerospace operates going forward.

New Approaches to Standard Practices
Downlink communication lasers are critical to AeroCube functionality, and have typically required the establishment of an alignment of the laser boresight and a star tracker system. Until recently, this was accomplished by having the AeroCube generate a spiral scan pattern detectable to the optical ground telescope located in Aerospace's El Segundo campus, and having on-site personnel process data to establish alignment.

Given the impact that the pandemic has had upon Aerospace operations, this approach was not currently feasible under mandatory telework conditions. However, necessity being the mother of all invention, it has prompted the team to develop new approaches to accomplishing the same goal.

"The optical ground station in the E-pod dome in El Segundo typically required a 2-person crew working in close proximity," said Darren Rowen, Director of Aerospace's Small Satellite Department. "With the COVID-19 operating restrictions, the team thought creatively and was able to develop a method using the partner spacecraft's star tracker as a receiver instead of the ground telescope. This required software updates for both space and ground systems to support this new method, and the team's experience with on-orbit reprogramming proved invaluable in enabling this modified approach."

The technology in question is up to the challenge, as the sensor in the star tracker has extended sensitivity into the near-infrared and can readily detect a 1064 nanometer (nm) laser signal. Furthermore, recently developed camera software can provide video of down-sampled and compressed frames small enough to downlink via ultra-high frequency (UHF) radio, enabling synchronization with the spiral scan. Most significantly, this new communication laser alignment method effectively reduces the on-site staffing requirement to zero.

"The traditional laser alignment process is time-consuming to execute with ground telescopes due to limited opportunities imposed by orbital geometry and weather. The new cross-vehicle alignment methodology can now be executed multiple times for refinement and validation in a matter of days," Rowen added.

Given that support from the ground telescope team is no longer required, this new approach is expected to be a preferred methodology for future missions when it is available. And if any further proof of the viability of remote work was needed, the necessary software updates that made this possible were developed by remote personnel, and the spacecraft software was also updated on-orbit by remote operators.

Pandemic Realities Prompt New, Improved Methodologies
Going forward, new short-wave infrared band sensors will yield data on cloud backgrounds to inform future low Earth orbit missions, and a recent development mission will provide a lessons-learned baseline for rapid, commercial off the shelf-based spacecraft and payload production. Most importantly, this new, agile methodology may obviate the need for personnel operating within close proximity to ground stations, potentially ushering in a new era of decentralized, remote operations.

Aerospace's new approach to the AeroCube laser alignment process is testimony to its continued dedication to innovation and forward-thinking solutions for the space domain, and indicative of its proven ability to not only meet the challenges of an ever-changing industry, but also rapidly adjust operational standards to meet or exceed mission-critical needs and expectations.

Although the shift to remote work has been challenging, it is also fostering innovation and rapid, informed responses to new pandemic norms. As always, Aerospace's commitment to its strategic imperatives has enabled it to leverage its unrivaled technical expertise to find new means of providing services its customers rely upon, while effectively shaping the future in the process.


Related Links
Aerospace AeroCube
Microsat News and Nanosat News at SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MICROSAT BLITZ
Loft Orbital awards launch contract to Exolaunch to deliver YAM-3 microsatellite into orbit on Falcon 9
Berlin, Germany (SPX) Jun 12, 2020
Exolaunch, the leading rideshare launch and deployment solutions provider, has announced a Launch Services Agreement with Loft Orbital, a San Francisco-based company, to deliver Loft Orbital's YAM microsatellite into sun-synchronous orbit on Falcon 9. Under the contract, Exolaunch will deliver mission management, deployment and integration services to Loft Orbital, who operates microsatellites and flies customers' payloads as a service. The launch is targeted for December 2020 and is part of Space ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MICROSAT BLITZ
MICROSAT BLITZ
Airbus wins next study contract for Martian Sample Fetch Rover

Electrically charged dust storms drive Martian chlorine cycle

NASA's Mars Rover Drivers Need Your Help

ExoMars spots unique green glow at the Red Planet

MICROSAT BLITZ
NASA invites competitors to shoot for the moon and beyond

NASA Selects Astrobotic to Fly Water-Hunting Rover to the Moon

NASA awards Northrop Grumman Artemis contract for Gateway Crew Cabin

First global map of rockfalls on the Moon

MICROSAT BLITZ
Proposed NASA Mission Would Visit Neptune's Curious Moon Triton

SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

MICROSAT BLITZ
Research sheds new light on intelligent life existing across the galaxy

As many as six billion Earth-like planets in our galaxy, according to new estimates

Astronomers discover how long-lived Peter Pan discs evolve

Plant pathogens can adapt to a variety of climates, hosts

MICROSAT BLITZ
Arianespace Vega mission to perform Small Spacecraft Mission Service Proof of Concept flight

Putin: Russia is building defenses against hypersonic missiles

Northrop Grumman rocket boosters arrive at KSC for Artemis I mission

Rocket Lab to demonstrate fastest launch turnaround to date

MICROSAT BLITZ
Satellite launch center Wenchang eyes boosting homestay, catering sectors

Private investment fuels China commercial space sector growth

More details of China's space station unveiled

China space program targets July launch for Mars mission

MICROSAT BLITZ
NASA's OSIRIS-REx produces Nightingale mosaic

First Citizen Science Successes for Backyard Astronomy

NASA's OSIRIS-REx discovers sunlight can crack rocks on Asteroid Bennu

OSIRIS-REx finds heat, cold fracturing rocks on Asteroid Bennu









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.