Space Travel News  
FROTH AND BUBBLE
New Catalysts Hold Promise For Air Quality

Civil and environmental engineering professor Mark Rood (left) and graduate student John Atkinson developed a novel method of producing porous carbon spheres with iron dispersed throughout them for catalytic and air quality applications. Photo by L. Brian Stauffer
by Liz Ahlberg
Champaign IL (SPX) Dec 16, 2010
Fortified with iron: It's not just for breakfast cereal anymore. University of Illinois researchers have demonstrated a simpler method of adding iron to tiny carbon spheres to create catalytic materials that have the potential to remove contaminants from gas or liquid. Civil and environmental engineering professor Mark Rood, graduate student John Atkinson and their team described their technique in the journal Carbon.

Carbon structures can be a support base for catalysts, such as iron and other metals. Iron is a readily available, low-cost catalyst with possible catalytic applications for fuel cells and environmental applications for adsorbing harmful chemicals, such as arsenic or carbon monoxide.

Researchers produce a carbon matrix that has many pores or tunnels, like a sponge. The large surface area created by the pores provides sites to disperse tiny iron particles throughout the matrix.

A common source of carbon is coal. Typically, scientists modify coal-based materials into highly porous activated carbon and then add a catalyst. The multi-step process takes time and enormous amounts of energy. In addition, materials made with coal are plagued by ash, which can contain traces of other metals that interfere with the reactivity of the carbon-based catalyst.

The Illinois team's ash-free, inexpensive process takes its carbon from sugar rather than coal.

In one continuous process, it produces tiny, micrometer-sized spheres of porous, spongy carbon embedded with iron nanoparticles - all in the span of a few seconds.

"That's what really sets this apart from other techniques. Some people have carbonized and impregnated with iron, but they have no surface area. Other people have surface area but weren't able to load it with iron," Atkinson said. "Our technique provides both the carbon surface and the iron nanoparticles."

The researchers built upon a technique called ultrasonic spray pyrolysis (USP), developed in U. of I. chemistry professor Kenneth Suslick's lab in 2005. Suslick used a household humidifier to make fine mist from a carbon-rich solution, then directed the mist through an extremely hot furnace, which evaporated the water from each droplet and left tiny, highly porous carbon spheres.

Atkinson used USP to make his carbon spheres, but added an iron-containing salt to a carbon-rich sugar solution. When the mist is piped into the furnace, the heat stimulates a chemical reaction between the solution ingredients that creates carbon spheres with iron particles dispersed throughout.

"We were able to take advantage of Dr. Suslick's USP technique, and we are building upon it by simultaneously impregnating the porous carbons with metal nanoparticles," Atkinson said. "It's simple because it's continuous. We can isolate the carbon, add pores, and impregnate iron into the carbon spheres in a single step."

Another advantage of the USP technique is the ability to create materials to address particular needs. By fabricating the material from scratch, rather than trying to modify off-the-shelf products, scientists and engineers can develop materials for specific problem-solving scenarios.

"Right now, you take coal out of the ground and modify it. It's difficult to tailor it to solve a particular air quality problem," Rood said.

"We can readily change this new material by how it's activated to tailor its surface area and the amount of impregnated iron. This method is simple, flexible and tailorable."

Next, the researchers will explore applications for the material. Rood and Atkinson have received two grants from the National Science Foundation to develop the carbon-iron spheres to remove nitric oxide, mercury, and dioxin from gas streams - bioaccumulating pollutants that have caused concern as emissions from combustion sources.

Currently, the three pollutants can be dealt with separately by carbon-based adsorbents and catalysts, but the Illinois team and collaborators in Taiwan hope to harness carbon's adsorption properties and iron's reactivity to remove all three pollutants from gas streams simultaneously.

"We're looking at taking advantage of their porosity and, ideally, their catalytic applications as well," Atkinson said. "Carbon is a very versatile material. What's in my mind is a multi-pollutant control where you can use the porosity and the catalyst to tackle two problems at once."



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
University of Illinois
Our Polluted World and Cleaning It Up



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


FROTH AND BUBBLE
US environmentalists sue ExxonMobile over air pollution
New York (AFP) Dec 15, 2010
Two US environmental groups announced a lawsuit against oil giant ExxonMobil, claiming the company's Houston, Texas-area oil refinery and chemical plant complex has generated illegal amounts of air pollution. The Sierra Club and Environment Texas filed the suit Tuesday in federal district court against ExxonMobil and two subsidiaries, alleging that "equipment breakdowns, malfunctions, and ot ... read more







FROTH AND BUBBLE
The Flight Of The Dragon

ISRO To Launch New Satellite On December 20

SpaceX Dragon Does Two Orbits Before Pacific Splashdown

NASA, SpaceX giddy over historic orbit launch

FROTH AND BUBBLE
Wind And Water Have Shaped Schiaparelli On Mars

The Three Ages Of Mars

Odyssey Orbiter Nears Martian Longevity Record

Drilling For The Future Of Science

FROTH AND BUBBLE
Robotic Excavations Could Help Get Helium 3 From Moon To Earth

A Softer Landing on the Moon

Neptec Wins Canadian Space Agency Contract To Develop A New Generation Of Lunar Rovers

Mission to far side of moon proposed

FROTH AND BUBBLE
Kuiper Belt Of Many Colors

Reaching The Mid-Mission Milestone On The Way To Pluto

New Horizons Student Dust Counter Instrument Breaks Distance Record

Nitrogen Methane Dominate Icy Surface Of Eris

FROTH AND BUBBLE
Planetary Family Portrait Reveals Another Exoplanet

New Pictures Show Fourth Planet In Giant Version Of Our Solar System

Carbon-Rich Planet: A Girl's Best Friend

NASA Scientists Theorize Final Growth Spurt For Planets

FROTH AND BUBBLE
Brazil launches rocket into suborbit

New JPL Workers Shed Training Wheels For Rocket Launch

Fueling error blamed in loss of satellites

Russia probes navigation system spending after crash

FROTH AND BUBBLE
China Builds Theme Park In Spaceport

Tiangong Space Station Plans Progessing

China-Made Satellite Keeps Remote Areas In Venezuela Connected

Optis Software To Optimize Chinese Satellite Design

FROTH AND BUBBLE
Research Points To Better Understanding Of Carbon In Comets

MegaPhase RF Cables Enable Conclusion Of Seven-Year Deep Space Program

Study: Earth's precious metals from space

Dawn On A Smooth And Steady Course


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement