Subscribe free to our newsletters via your
. Space Travel News .




GPS NEWS
Neuronal positioning system: A GPS to navigate the brain
by Staff Writers
Jerusalem, Israel (SPX) Apr 29, 2015


Hebrew University and Harvard researchers have developed a method to map the circuitry of the brain with a "Neuronal Positioning System" (NPS) similar to how a Global Positioning System (GPS) triangulates our location on the planet. Image courtesy Dr. Shlomo Tsuriel and Dr. Alex Binshtok, Hebrew University of Jerusalem. For a larger version of this image please go here.

In new research published by Nature Methods, scientists from the Hebrew University of Jerusalem and Harvard University have announced a "Neuronal Positioning System" (NPS) that maps the circuitry of the brain, similar to how a Global Positioning System (GPS) receiver triangulates one's location on the planet.

For more than a century, neuroscientists have tried to uncover the structure of the brain's neuronal circuits in order to better understand how the brain works. These brain circuits, which perform functions such as processing information and triggering reflexes, are comprised of nervous system cells called neurons that work together to carry out a specialized function. Neurons send the messages to other neurons, or to target tissues such as skin and muscle that they innervate, via specialized wire-like processes called axons.

In the same way that we need to know the exact wiring of an electrical circuit to understand how it works, it's necessary to map the axonal wiring of neuronal circuits to understand how they function. Therefore a fundamental goal of neuroscience research is to understand the structural and functional connections of the brain's circuits.

While numerous scientific consortiums have advanced our understanding of neuronal organization, the available mapping techniques remain imperfect: for example, serial electron microscope techniques are limited in the area they can map, and tracer-based techniques are limited in the detail resolution.

Now, scientists from Dr. Alex Binshtok's laboratory at the Hebrew University's Faculty of Medicine and Dr. Jeff Lichtman's laboratory at Harvard University have described a method to map the location of the axonal branches ("arbors") of many individual neurons simultaneously, at the resolution of individual axons. Thus, by "seeing" many axons in the same preparation, it becomes possible to understand how specific neurons in one region are wired to other neuronal types and other regions.

This new approach makes it possible to learn about organizational principles of neuronal networks that would otherwise be difficult or impossible to study.

The research was conducted by Dr. Shlomo Tsuriel, a postdoctoral fellow from Dr. Alex Binshtok's lab and the study's lead author, with help from student Sagi Gudes, under the guidance of Dr. Binshtok at the Hebrew University's Faculty of Medicine (Department of Medical Neurobiology at the Institute for Medical Research Israel Canada) and at The Edmond and Lily Safra Center for Brain Sciences. The research was conducted in collaboration with Dr. Jeff Lichtman from Harvard University's Center for Brain Science and Department of Molecular and Cellular Biology.

Instead of trying to trace entire neurons all the way from the axon tips to the cell body, Dr. Tsuriel labeled only the cell body, but in a way that indicates the locations of its axonal branches. To that end, he used multiple injections in overlapping regions of a target tissue, with three or more differently colored retrograde tracers.

At each point the tracer was injected in a high concentration and spread to the area between the injection points, such that each area in the target tissue had a different color combination depending on its distance from the injection site.

Axons innervating each area took up the dyes and transported them in small vesicles to the cell body, such that each vesicle had a color combination reflecting the area it was taken from.

A few hours after the injection, each neuronal cell body was filled with vesicles in a variety of colors reflecting the colors in the areas that these neurons innervate. Thus, based on the combinations and intensities of the colors in the individual vesicles transported to the cell, the projection sites of the axon can be outlined.

This approach is in some ways analogous to the principle used in a Global Positioning System (GPS) receiver, which uses distances from three or more satellites to triangulate its position. For this reason the new technique was called "Neuronal Positioning System" (NPS).

The description of this new method is presented in Nature Methods as "Multispectral labeling technique to map many neighboring axonal projections in the same tissue" (Advance Online Publication, doi:10.1038/nmeth.3367).

According to Hebrew University's Dr. Alex Binshtok: "The new method that we developed allows us to answer a 'big question' in neuroscience about the organizational principles of neuronal circuits. Using the NPS technique that maps many axons in same tissue, we now can study what defines the routes along which the neurons will send their projections, as well as their targets.

"We can also learn how the wiring of the neuronal circuits changes during development and in a variety of pathological conditions. The answers to these questions will be the first step to comprehending how the information flows and is processed in the nervous system, and how changes in the neuronal organization affect neuronal function. I believe many scientists will find the NPS approach useful to help them answer the question of how the brain works."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The Hebrew University of Jerusalem
GPS Applications, Technology and Suppliers






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








GPS NEWS
Telit GNSS module enables high-performance position reporting
Raleigh NC (SPX) Apr 22, 2015
Telit Wireless Solutions has announced the release of a new GNSS module, the SE868-V3. This positioning module combines GPS, Glonass, Beidou, Galileo, and SBAS which enables the creation of high-performance position reporting and navigation solutions. The SE868-V3 can navigate to -162 dBm and track to -166 dBm, thereby providing improved performance in harsh environments. It is pin-to-pin ... read more


GPS NEWS
Ariane 5 reaches the launch zone for next heavy-lift mission

Sentinel-2A arrives for Ariane Vega mission

Arianespace Flight VA222: THOR 7 and SICRAL 2 - launch delayed

SpaceX Dragon cargo ship arrives at space station

GPS NEWS
UAE opens space center to oversee mission to Mars

Robotic Arm Gets Busy on Rock Outcrop

Mars might have liquid water

NASA's Curiosity Rover Making Tracks and Observations

GPS NEWS
Japan to land first unmanned spacecraft on moon in 2018

Dating the moon-forming impact event with meteorites

Japan to land probe on the moon in 2018

Japan planning moon mission: space agency

GPS NEWS
Capstone: 2015

NASA's New Horizons Nears Historic Encounter with Pluto

Pluto, now blurry, will become clear with NASA flyby

NASA Extends Campaign for Public to Name Features on Pluto

GPS NEWS
First exoplanet visible light spectrum

White Dwarf May Have Shredded Passing Planet

Spitzer, OGLE spot planet deep within our galaxy

Spitzer Spots Planet Deep Within Our Galaxy

GPS NEWS
NASA 3-D Prints First Full-Scale Copper Rocket Engine Part

SpaceX says rocket recovery failure due to throttle valve problem

NASA, Orbital ATK tackle tough booster issues before ground test

Russia Abandons Plans to Build Super-Heavy Carrier Rocket From Scratch

GPS NEWS
Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

GPS NEWS
Ceres' Bright Spots Come Back Into View

Design begins for ESA's Asteroid Impact Mission

Millimetre-sized stones formed our planet

SwRI team studies meteorites from asteroids to date moon impacts




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.