. Space Travel News .




.
WATER WORLD
Natural iron fertilisation influences deep-sea ecosystems off the Crozet Islands
by Staff Writers
Southhampton UK (SPX) Jul 15, 2011

David Billett holds a large sea cucumber.

Geo-engineering schemes aimed at tackling global warming through artificial iron fertilisation of the oceans would significantly affect deep-sea ecosystems, according to research involving scientists from the United Kingdom's National Oceanography Centre (NOC) as well as former Ocean and Earth Science research students of the University of Southampton, which is based at the Centre.

Most scientists believe that the rapid increase in atmospheric carbon dioxide resulting largely from the burning of fossil fuels is causing the world to warm up. One proposed geo-engineering scheme aimed at mitigating global warming is ocean iron fertilisation, the ecological consequences of which are as yet inadequately understood.

Biological production in the oceans is dominated by phytoplankton growth in the sunlit surface waters. Through the process of photosynthesis, these tiny marine plants draw large amounts of carbon dioxide down from the atmosphere. When they die, some of the carbon assimilated in their bodies is exported to the deep ocean. Boosting this 'biological carbon pump' could in principle reduce the amount of carbon dioxide in the atmosphere.

Phytoplankton growth in many areas of the open ocean is limited by the low availability of iron, despite the presence of high concentrations of other nutrients. Relatively small-scale experiments have shown that fertilising such areas with iron increases phytoplankton growth. Therefore, adding large amounts of iron over long periods of time should increase the magnitude of the biological carbon pump.

"To get a handle on how long-term, large-scale iron fertilisation might affect deep-sea ecosystems, we studied natural iron fertilisation off the Crozet Islands in the southern Indian Ocean," said research team member Dr David Billett of NOC.

During a research cruise aboard the RRS Discovery, the researchers compared two deep-sea regions about 460 kilometres apart and with water depths of around 4,200 metres. One of these regions received iron naturally leached from the volcanic islands, leading to a large phytoplankton bloom in the spring, whereas the other did not. Otherwise, the two sites were similar, and there were no physical barriers that could stop organisms dispersing between them.

The researchers collected animal samples from trawls and sediment cores, and used both still and video cameras to survey life on the seafloor. They also measured the amount of organic material sinking down to the seabed from the sunlit surface waters, and analysed its chemical composition.

They found that the seabed at the site enjoying natural iron fertilisation received more organic material over a longer period and of a higher nutritional value from above than did the iron-limited site. The sinking organic matter at the former site was also richer in carotenoid pigments important for sea cucumber reproduction. These differences reflected the contrasting productivity of the surface waters at the two sites, as well as the phytoplankton species present.

Due to better organicmatter supply, the seafloor of the iron fertilised site supported a larger abundance of deep-sea animals such as sea cucumbers (holothurian echinoderms) and brittle stars (ophiuroid echinoderms related to starfish). In addition, whereas some sea cucumber and brittle star species were found at both sites, others prospered only at one or other site. This resulted in major differences in species composition and evenness, with the animal community of the seafloor at the iron-fertilised site resembling that of the productive North East Atlantic, more than 16,000 kilometres away.

"Our findings show that the timing, quantity and quality of organic matter reaching the seafloor greatly influences biomass and species' composition of deep-sea communities off the Crozet Islands, as it does in other oceanic regions," said Billett. "Because the amount and composition of sinking organic matter is affected by iron supply to the surface waters, it is likely that large-scale, long-term artificial iron fertilization, as envisaged by some geo-engineering schemes, would significantly affect deep-sea ecosystems."

However, whereas natural iron fertilisation increased ecosystem biomass, there was no evidence of damage due to reduced oxygen concentration at depth, assuaging the concern that artificial ocean iron fertilisation might cause the seafloor to become a biodiversity desert due to lack of oxygen.

Wolff, G. A., Billett, D. S. M., Bett, B. J., Holtvoeth, J., FitzGeorge-Balfour, T., Fisher, E. H., Cross, I., Shannon, R., Salter, I., Boorman, B., King, N. J., Jamieson, A. and Chaillan, F. The effects of natural iron fertilisation on deep-sea ecology: The Crozet Plateau, Southern Indian Ocean. PloS One 6(6) (2011): e20697. doi:10.1371/journal.pone.0020697




Related Links
National Oceanography Centre
Water News - Science, Technology and Politics

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



WATER WORLD
EU fisheries chief seeks policy reforms
Brussels (UPI) Jul 13, 2011
Europe's fisheries won't survive under current policies and a new package of reforms will offer much-needed changes, the European Union's maritime affairs chief says. The European Commission was set to produce broad new proposals to modify the EU Common Fisheries Policy at a time when dwindling stocks are forcing member nations to import more and more of their fish supplies. Euro ... read more


WATER WORLD
Countdown commenced for PSLV-C17/GSAT-12 Mission

SpaceX Names Mark Bitterman Senior Vice President of Government Affairs

Globalstar Satellites Now Scheduled for Launch on July 13th

Arianespace uses Soyuz to loft six Globalstars to orbit from Baikonur

WATER WORLD
Two Possible Sites for Next Mars Rover

Scientists uncover evidence of a wet Martian past in desert

NASA Research Offers New Prospect Of Water On Mars

New Animation Depicts Next Mars Rover in Action

WATER WORLD
Marshall Center's Bassler Leads NASA Robotic Lander Work

NASA puts space probe into lunar orbit

ARTEMIS Spacecraft Prepare for Lunar Orbit

LRO Showing Us the Moon as Never Before

WATER WORLD
Neptune Completes First Orbit Since Discovery In 1846

Clocking The Spin of Neptune

Scientist accurately gauges Neptune's spin

Williams and MIT Astronomers Observe Pluto and its Moons

WATER WORLD
Microlensing Finds a Rocky Planet

A golden age of exoplanet discovery

CoRoT's new detections highlight diversity of exoplanets

Rage Against the Dying of the Light

WATER WORLD
Planetary Science Institute Selects XCOR To Fly ATSA Suborbital Observatory

PSLV-C17 to Launch GSAT-12 on July 15, 2011

Astrium signs up for Next Gen Launcher High Thrust Engine

NASA Will Compete Space Launch System (SLS) Boosters

WATER WORLD
China launches new data relay satellite

Time Enough for Tiangong

China launches experimental satellite

China to launch an experimental satellite in coming days

WATER WORLD
NASA Spacecraft to Enter Asteroid's Orbit on July 15

Dawn Nears Start of Year-Long Stay at Giant Asteroid

First-Ever View of a Sungrazer Comet In Front of the Sun

Dawn Team Members Check out Spacecraft


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement