. Space Travel News .




.
NANO TECH
Nanotubes Key to Microscopic Mechanics
by Staff Writers
Oxford UK (SPX) Oct 27, 2011

Carbon nanotubes rose to prominence in the early 1990s when their range of remarkable properties became apparent. These include phenomenal strength and electrical properties that can be tailored to suit.

In the latest issue of Elsevier's Materials, researchers from Spain and Belgium reported on the innovative use of carbon nanotubes to create mechanical components for use in a new generation of micro-machines.

While the electronics industry has excelled in miniaturizing components, with individual elements approaching the nanoscale (or a billionth of a meter), reducing the size of mechanical systems has proved much more challenging.

One of the difficulties of shrinking mechanical devices is that the conventional techniques used to produce individual components are not useful when it comes to creating intricate shapes on the microscale.

One promising technique is electrical discharge machining (EDM), which uses a spark of electricity to blast away the unwanted material to create complex shapes. However, this method requires that the target material is electrically conductive, limiting the use of EDM on hard, ceramic materials.

But now, by implanting carbon nanotubes in silicon nitride, the ceramic of choice, Manuel Belmonte and colleagues have been able to increase the electrical conductivity of the material by 13 orders of magnitude and have used EDM to produce a microgear without compromising the production time or integrity of the apparatus.

Carbon nanotubes rose to prominence in the early 1990s when their range of remarkable properties became apparent. These include phenomenal strength and electrical properties that can be tailored to suit.

Each tube is made from a rolled up sheet of carbon atoms in a honeycomb-like structure. Unrolled, this sheet is also known as graphene, the innovative material which was the subject of the 2010 Nobel Prize in Physics. Implanted inside a ceramic, these nanotubes form a conductive network that greatly reduces electrical resistance.

The electrical conductivity of the composite material is much higher, while the mechanical properties of the ceramic are preserved and wear resistance is significantly improved.

As the corresponding author, Dr Manuel Belmonte, clarifies; this breakthrough will "allow the manufacture of intricate 3D components, widening the potential use of advanced ceramics and other insulating materials".

The team hopes that such nanocomposite materials will find use in emerging applications, such as, microturbines, microreactors, and bioimplants.

This article is "Carbon nanofillers for machining insulating ceramics" (doi: 10.1016/S1369-7021(11)70214-0) by Olivier Malek, Jesus Gonzalez-Julian, Jef Vleugels, Wouter Vanderauwera, Bert Lauwers, Manuel Belmonte. It appears in Materials, Volume 14, Issue 10, Page 496 (2011) published by Elsevier.

Related Links
-
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



NANO TECH
Nanoparticles and their size may not be big issues
Eugene OR (SPX) Oct 26, 2011
If you've ever eaten from silverware or worn copper jewelry, you've been in a perfect storm in which nanoparticles were dropped into the environment, say scientists at the University of Oregon. Since the emergence of nanotechnology, researchers, regulators and the public have been concerned that the potential toxicity of nano-sized products might threaten human health by way of environment ... read more


NANO TECH
SpaceX Completes Key Milestone to Fly Astronauts to International Space Station

ILS Proton Launches ViaSat-1 for ViaSat

Final checks for first Soyuz launch from Kourou

Soyuz is put through its paces for Thursday's launch

NANO TECH
Opportunity Past 21 Miles of Driving! Will Spend Winter at Cape York

Scientists develope new way to determine when water was present on Mars and Earth

Mars Rover Carries Device for Underground Scouting

Mars Landing-Site Specialist

NANO TECH
Lunar Probe to search for water on Moon

Subtly Shaded Map of Moon Reveals Titanium Treasure Troves

NASA's Moon Twins Going Their Own Way

Titanium treasure found on Moon

NANO TECH
Dwarf planet may not be bigger than Pluto

Series of bumps sent Uranus into its sideways spin

Mission to Mysterious Uranus

Spinning hourglass object may be the first of many to be discovered in the Kuiper belt

NANO TECH
UH Astronomer Finds Planet in the Process of Forming

Nearby planet-forming disk holds water for thousands of oceans

Herschel discovers tip of cosmic iceberg around nearby young star

NASA's Spitzer Detects Comet Storm In Nearby Solar System

NANO TECH
The Spark Of A New Era Was A Blast For Rocket Science

Caltech Event Marks 75th Anniversary of JPL Rocket Tests

Russia puts new Rus-M carrier rocket project on hold

Russia to abandon rocket booster work

NANO TECH
Living on Tiangong

Thousands of dreams to fly on Shenzhou 8

China's first space lab module in good condition

Takeoff For Tiangong

NANO TECH
Researchers Explain the Formation of Scheila's Unusual Triple Dust Tails

Formation of Scheila's Triple Dust Tails Explained

NASA's Dawn Science Team Presents Early Science Results

Amateur skywatchers help space hazards team


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement