![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Brooks Hays Brisbane, Australia (UPI) Apr 18, 2016
A superhydrophobic fabric that attracts oil, being developed by researchers in Australia, may one day be a household cleaning product. As of now, it's a prototype with great promise. By growing semi-conducting nanostructures directly on fabric, researchers at the Queensland University of Technology have found a novel way to build an oil mop. "This fabric repels water and attracts oil. We have tested it and found it effective at cleaning up crude oil, and separating organic solvents, ordinary olive and peanut oil from water," Anthony O'Mullane, a chemical engineer at QUT, said in a news release. "We were able to mop up crude oil from the surface of fresh and salt water." Though in theory any fabric could work, the scientists selected nylon as their base fabric. The nylon already had silver woven into it, which primed it for step two in the oil mop production process. Next, the fabric was dipped in a vat where it received a coating of copper using a process called electrochemical deposition. "Now with a copper coating, we converted the fabric into a semiconducting material with the addition of another solution that causes nanostructures to grow on the fabric's surface -- the key to its enhanced properties," O'Mullane explained. "The nanostructures are like tiny rods that cover the surface of the fabric. Water just runs straight off it but the rods attract and hold oil." O'Mullane and his colleagues believe the mop could be used for a variety of cleanup jobs. Its self-cleaning and antibacterial qualities make it especially versatile. When exposed to sunlight, its semiconducting nanostructures could work to break down organic materials. "Its antibacterial properties arising from the presence of copper could be used to kill bugs while also separating water from industrial waste in waterways or decontaminate water in remote and poor communities where water contamination is an issue," O'Mullane added. Researchers described their magic fabric in the journal ChemPlusChem.
Related Links All About Oil and Gas News at OilGasDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |