Subscribe free to our newsletters via your
. Space Travel News .




INTERN DAILY
Nanoscale scaffolds and stem cells show promise in cartilage repair
by Staff Writers
Baltimore MD (SPX) Jul 18, 2012


Unlike skin, cartilage can't repair itself when damaged.

Johns Hopkins tissue engineers have used tiny, artificial fiber scaffolds thousands of times smaller than a human hair to help coax stem cells into developing into cartilage, the shock-absorbing lining of elbows and knees that often wears thin from injury or age. Reporting online in the Proceedings of the National Academy of Sciences, investigators produce an important component of cartilage in both laboratory and animal models.

While the findings are still years away from use in people, the researchers say the results hold promise for devising new techniques to help the millions who endure joint pain.

"Joint pain affects the quality of life of millions of people. Rather than just patching the problem with short-term fixes, like surgical procedures such as microfracture, we're building a temporary template that mimics the cartilage cell's natural environment, and taking advantage of nature's signals to biologically repair cartilage damage," says Jennifer Elisseeff, Ph.D., Jules Stein Professor of Ophthalmology and director of the Translational Tissue Engineering Center at the Johns Hopkins University School of Medicine.

Unlike skin, cartilage can't repair itself when damaged. For the last decade, Elisseeff's team has been trying to better understand the development and growth of cartilage cells called chondrocytes, while also trying to build scaffolding that mimics the cartilage cell environment and generates new cartilage tissue. This environment is a 3-dimensional mix of protein fibers and gel that provides support to connective tissue throughout the body, as well as physical and biological cues for cells to grow and differentiate.

In the laboratory, the researchers created a nanofiber-based network using a process called electrospinning, which entails shooting a polymer stream onto a charged platform, and added chondroitin sulfate-a compound commonly found in many joint supplements-to serve as a growth trigger.

After characterizing the fibers, they made a number of different scaffolds from either spun polymer or spun polymer plus chondroitin. They then used goat bone marrow-derived stem cells (a widely used model) and seeded them in various scaffolds to see how stem cells responded to the material.

Elisseeff and her team watched the cells grow and found that compared to cells growing without scaffold, these cells developed into more voluminous, cartilage-like tissue. "The nanofibers provided a platform where a larger volume of tissue could be produced," says Elisseeff, adding that 3-dimensional nanofiber scaffolds were more useful than the more common nanofiber sheets for studying cartilage defects in humans.

The investigators then tested their system in an animal model. They implanted the nanofiber scaffolds into damaged cartilage in the knees of rats, and compared the results to damaged cartilage in knees left alone.

They found that the use of the nanofiber scaffolds improved tissue development and repair as measured by the production of collagen, a component of cartilage. The nanofiber scaffolds resulted in greater production of a more durable type of collagen, which is usually lacking in surgically repaired cartilage tissue.

In rats, for example, they found that the limbs with damaged cartilage treated with nanofiber scaffolds generated a higher percentage of the more durable collagen (type 2) than those damaged areas that were left untreated.

"Whereas scaffolds are generally pretty good at regenerating cartilage protein components in cartilage repair, there is often a lot of scar tissue-related type 1 collagen produced, which isn't as strong," says Elisseeff. "We found that our system generated more type 2 collagen, which ensures that cartilage lasts longer."

"Creating a nanofiber network that enables us to more equally distribute cells and more closely mirror the actual cartilage extracellular environment are important advances in our work and in the field. These results are very promising," she says.

Other authors included Jeannine M. Coburn, Matthew Gibson, Sean Monagle and Zachary Patterson, all from Johns Hopkins University. The research was supported by grants R01 EB05517, F31 AG033999 and F30 AG034807 from the National Institutes of Health.

.


Related Links
Johns Hopkins Medical Institutions
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








INTERN DAILY
EU threatens Microsoft with antitrust fine over web browser
Brussels (AFP) July 17, 2012
The European Commission threatened Microsoft with another big fine on Tuesday after the US software giant failed to give 28 million European customers the ability to choose their web browser. Microsoft immediately apologised for the "technical error" after 28 million users of the Windows 7 operating system were unable to choose between the company's default Internet Explorer and other browse ... read more


INTERN DAILY
NASA Selects Launch Services Contract for Jason-3 Mission

NASA Selects Launch Services Contract for Three Missions

NASA Selects ULA's Workhorse Delta II Rocket for Three Future Missions

SpaceX Completes Design Review of Dragon

INTERN DAILY
Opportunity Continues to Explore Rocks on the Rim of Endeavour Crater

Orbiter Enters, Then Exits, Standby Safe Mode

NASA's Mars rover two weeks from landing

Developing Technologies For Living Off the Land...In Space

INTERN DAILY
ESA to catch laser beam from Moon mission

Researchers Estimate Ice Content of Crater at Moon's South Pole

Researchers find evidence of ice content at the moon's south pole

Nanoparticles found in moon glass bubbles explain weird lunar soil behaviour

INTERN DAILY
Hubble Discovers a Fifth Moon Orbiting Pluto

Hubble telescope spots fifth moon near Pluto

New Horizons Doing Science in Its Sleep

It's a Sim: Out in Deep Space, New Horizons Practices the 2015 Pluto Encounter

INTERN DAILY
Can Astronomers Detect Exoplanet Oceans

The Mysterious Case of the Disappearing Dust

Study in Nature sheds new light on planet formation

New Instrument Sifts Through Starlight to Reveal New Worlds

INTERN DAILY
J-2X Engine With Nozzle Extension Goes the Distance

Cella Energy Signs Fuel Source Deal with Kennedy Space Center

HI-C Sounding Rocket Mission Has Finest Mirrors Ever Made

XCOR Aerospace And Midland Development Corp Announce New Commercial Spaceflight Research Center

INTERN DAILY
Astronauts in good shape after return

Shenzhou mission sparks 'science fever'

China Beats Russia on Space Launches

China open to cooperation

INTERN DAILY
Planetary Resources Announces Agreement with Virgin Galactic for Payload Services

Explained: Near-miss asteroids

The B612 Foundation Announces The First Privately Funded Deep Space Mission

Ex-NASA astronauts aim to launch asteroid tracker




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement