Subscribe free to our newsletters via your
. Space Travel News .




FLOATING STEEL
NTU's 'sense-ational' invention helps underwater vessels navigate with ease
by Staff Writers
Nanyang, Singapore (SPX) Dec 13, 2012


File image.

NTU scientists have invented a 'sense-ational' device, similar to a string of 'feelers' found on the bodies of the Blind Cave Fish, which enables the fish to sense their surrounding and so navigate easily.

Using a combination of water pressure and computer vision technology, the sensory device is able to give users a 3-D image of nearby objects and map its surroundings. The possible applications of this fish-inspired sensor are enormous. The sensor can potentially replace the expensive 'eyes and ears' on Autonomous Underwater Vehicles (AUVs), submarines and boats that currently rely on cameras and sonars to gather information about the environment around them.

The revolutionary, low-powered sensor is unlike cameras which cannot see in dark or murky waters; or sonars whose sound waves pose harm to some marine animals.

These extremely small sensors (each sensor is 1.8mm x 1.8mm) are now being used in AUVs developed by researchers from Singapore-MIT Alliance for Research and Technology (SMART), a research centre funded by the National Research Foundation. The centre is developing a new generation of underwater 'stingray-like' robots and autonomous surface vessels.

The new sensors, made using Microelectromechanical Systems (MEMS) technology, will make such robots smarter and prolong their operational time as battery power is conserved.

Associate Professor Miao Jianmin from the School of Mechanical and Aerospace Engineering, and his team of four have spent the last five years in collaboration with SMART to develop micro-sensors that mimic the row of 'feelers' on both sides of the Blind cave fish's body.

Associate Prof Miao said the line of sensors present on the fish's body is the reason why it can sense objects around it and still travel at high speeds without colliding with any underwater obstacles.

"To mimic nature, our team created microscopic sensory pillars wrapped in hydrogel - a material which is similar to the natural neuromasts of the blind cave fish - into an array of two rows of five sensors," Prof Miao said.

"This array of micro-sensors will then allow AUVs to locate, identify, and classify obstacles and objects in water through water pressure and also to optimise its movement in water by sensing the water flow."

The new sensor array which costs below S$100 to make, is also more affordable than sonars, which can detect faraway objects but not nearby objects and cost thousands of dollars.

Partnering Prof Miao to develop the sensors and to adopt it for use on AUVs is Professor Michael Triantafyllou from SMART. Prof Triantafyllou, from SMART's Centre for Environmental Sensing and Modeling (CENSAM), is one of the world's foremost experts on creating underwater robots modelled after aquatic animals like fish.

Current problems with AUVs include poor navigation in murky or cloudy waters such as those off the coast of Singapore, as underwater cameras can only see a short distance, Prof Triantafyllou said.

"Other methods like underwater lights and cameras, acoustic navigation, and sonars also work, but they are very expensive and require very high levels of power that drain the batteries. The new sensors are much cheaper and only require small amounts of power. Also, sensors like sonar are loud and invasive and they may harm aquatic animals that also use sound waves to navigate," the Massachusetts Institute of Technology professor added.

The aim of the AUVs is for environmental sensing, to detect environmental pollution, contaminants and to monitor the overall water quality in Singapore's waters. The AUVs will have chemical sensors installed to detect the chemical condition of water (dissolved oxygen, nutrients, metals, oils, and pesticides), and biological sensors to monitor water conditions such as harmful bacteria and pathogens.

Other potential application of these MEMS sensors, which specialises in near-field detection include defence applications. These can detect nearby submarines without the use of sonar thatgives away one's location.

This collaborative research resulted in two breakthrough papers being accepted for presentation at a prestigious MEMS conference next January in Taiwan, organised by the Institute of Electrical and Electronics Engineers (IEEE).

One paper is for the development of the piezoelectric sensor which does not require any energy as it generates an electric voltage when water flows past the 'feelers'. The second paper focuses on a low-powered biomimetic sensor which can detect underwater objects even when there is little water flowing past it.

To further improve the sensor, Prof Miao's team is now looking to develop a hybrid sensor which will combine both the zero-energy piezoelectric sensor's high accuracy with the low-powered static sensor's ability to detect objects in still water.

.


Related Links
Nanyang Technological University
Naval Warfare in the 21st Century






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLOATING STEEL
Briton jailed for plot to pass nuclear sub secrets to Russia
London (AFP) Dec 12, 2012
A British navy sailor was jailed for eight years Wednesday for trying to pass nuclear submarine secrets to men he thought were Russian spies. Edward Devenney, 30, "was prepared to betray his country and his colleagues", Judge John Saunders said at the Old Bailey Central Criminal Court in London as he sentenced the petty officer. The court heard that Devenney rang the Russian embassy in N ... read more


FLOATING STEEL
Russia works to fix satellite's off-target orbit

ULA Launch Monopoly to End

SPACEX Awarded Two EELV Class Missions From The USAF

Russia Set to Launch Telecoms Satellite for Gazprom

FLOATING STEEL
Curiosity Rover Nearing Yellowknife Bay

Charitum Montes: a cratered winter wonderland

Opportunity Continues Rock Studies

Orbiter Spies Where Rover's Cruise Stage Hit Mars

FLOATING STEEL
Apollo's Lunar Dust Data Being Restored

To the moon and back for less than 2 billion dollars

NASA's GRAIL Creates Most Accurate Moon Gravity Map

Chinese astronauts may grow veg on Moon

FLOATING STEEL
Halfway Between Uranus and Neptune, New Horizons Cruises On

Dwarf planet Makemake lacks atmosphere

Keck Observations Bring Weather Of Uranus Into Sharp Focus

At Pluto, Moons and Debris May Be Hazardous to New Horizons Spacecraft During Flyby

FLOATING STEEL
Astronomers discover and 'weigh' infant solar system

Search for Life Suggests Solar Systems More Habitable than Ours

Do missing Jupiters mean massive comet belts?

Brown Dwarfs May Grow Rocky Planets

FLOATING STEEL
North Korea launches long-range rocket

US to launch anew secretive space plane

N. Korea replacing faulty rocket stage: report

N. Korea completes installing rocket: report

FLOATING STEEL
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

FLOATING STEEL
Big Asteroid Tumbles Harmlessly Past Earth

Student Team Provides Real-Time Video of Asteroid Toutatis

What is Creating Gullies on Vesta?

Heliophysics Nugget: Sungrazing Comets as Solar Probes




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement