Space Travel News  
TIME AND SPACE
NIST creates fundamentally accurate quantum thermometer
by Staff Writers
Washington DC (SPX) Mar 22, 2016


At top is an electron micrograph of the silicon nitride beam. The bottom shows how the beam deforms as it vibrates (length scale greatly exaggerated) with the red regions showing the most deformation, and the blue regions not moving at all. Over one vibrational period the center of beam goes from being stretched out as shown, to being compressed inward, and then back. Image courtesy CNST/NIST. For a larger version of this image please go here.

Better thermometers might be possible as a result of a discovery at the National Institute of Standards and Technology (NIST), where physicists have found a way to calibrate temperature measurements by monitoring the tiny motions of a nanomechanical system that are governed by the often counterintuitive rules of quantum mechanics.

While the method is not yet ready for commercialization, it reveals how an object's thermal energy - its heat - can be determined precisely by observing its physical properties at the quantum scale.

While the initial demonstration has an absolute accuracy only within a few percentage points, the NIST approach works over a wide temperature range encompassing cryogenic and room temperatures. It is also accomplished with a small, nanofabricated photonic device, which opens up possible applications that are not practical with conventional temperature standards.

The NIST team's approach arose from their efforts to observe the vibrations of a small transparent beam of silicon nitride using laser light. Thermal energy - often expressed as temperature - makes all objects vibrate; the warmer the object, the more pronounced the vibrations, though they are still on the order of just a picometer (trillionths of a meter) in size for the beam at room temperature.

To observe these tiny perturbations, the team carved a small reflective cavity into the beam. When they shone a laser through the crystal, the light reflecting from the cavity experienced slight shifts in color or frequency due to the beam's temperature-induced vibrations, making the light's color change noticeably in time with the movement.

But these were not the only vibrations the team members could see. The team also spotted the much more subtle vibrations that all objects possess due to a quantum-mechanical property called zero-point motion: Even at its lowest possible energy, the beam vibrates ever so slightly due to the inherent uncertainty at the heart of quantum mechanics.

This motion is independent of temperature, and has a well-known amplitude fundamentally dictated by quantum mechanics. By comparing the relative size of the thermal vibration to the quantum motion, the absolute temperature can be determined.

These intrinsic quantum fluctuations are thousands of times fainter and ordinarily get lost in the noise of the thermal energy-induced vibrations typical of ordinary temperatures, but the process of measuring the beam provides a method to distinguish quantum and thermal fluctuations. When photons from the laser bounce off the sides of the beam, they give it slight kicks, inducing correlations that make the quantum motion more pronounced.

"Our technique allowed us to tease the quantum signals out from under the much larger thermal noise," says the team's Tom Purdy, a physicist at NIST's Physical Measurement Laboratory and at the Joint Quantum Institute.

"Now we can directly connect temperature to the quantum mechanical fluctuations of a particle. It sets the stage for a new approach to primary thermometry."

The power of this new method, when fully developed, will come when the beam is paired with other much more sensitive on-chip photonic thermometers also under development at NIST.

Such devices offer the relative temperature sensitivity demanded by applications in pharmaceutical manufacturing, other high performance industrial applications, and climate monitoring, but require absolute calibration, and may drift over time. This new quantum thermometer will act as an integrated temperature standard, ready to keep the other thermometer on track over long periods of time.

Purdy will present the team's results on March 16, 2016, at the American Physical Society March Meeting in Baltimore, Md.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Institute of Standards and Technology
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Theoretical physics discovery to set the research field buzzing
Cincinnati OH (SPX) Mar 21, 2016
Bazinga! University of Cincinnati theoretical physicists are about to report on a controversial discovery that they say contradicts the work of researchers over the decades. The discovery concerns the conventional approach toward bosonization-debosonization. For folks outside the physics lab and the whiteboard, this could affect calculations regarding the future of quantum computers as wel ... read more


TIME AND SPACE
Launch of Dragon Spacecraft to ISS Postponed Until April

ILS and INMARSAT Agree To Future Proton Launch

Soyuz 2-1B Carrier Rocket Launched From Baikonur

ISRO launches PSLV C32, India's sixth navigation satellite

TIME AND SPACE
How the ExoMars mission could sniff out life on Mars

ExoMars on its way to solve the Red Planet's mysteries

Europe's New Mars Mission Bringing NASA Radios Along

Close comet flyby threw Mars' magnetic field into chaos

TIME AND SPACE
Permanent Lunar Colony Possible in 10 Years

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

TIME AND SPACE
Pluto's 'Snakeskin' Terrain: Cradle of the Solar System?

What's Eating at Pluto?

Methane Snow on Pluto's Peaks

Versatile Instrument to Scout for Kuiper Belt Objects

TIME AND SPACE
NASA's K2 mission: Kepler second chance to shine

Star eruptions create and scatter elements with Earth-like composition

Astronomers discover two new 'hot Jupiter' exoplanets

Sharpest view ever of dusty disc around aging star

TIME AND SPACE
Robert Goddard's Rocket and the Launch of Spaceflight

Engine Test Marks Major Milestone on NASA's Journey to Mars

NASA Prepares to Fly - First RS-25 Flight Engine Test Set for March

US to Buy Eight Russian RD-181 Rocket Engines

TIME AND SPACE
China's ambition after space station

Sky is the limit for China's national strategy

Aim Higher: China Plans to Send Rover to Mars in 2020

China's lunar probe sets record for longest stay

TIME AND SPACE
As Cold as Ice and as Old as the Sun: Cool Findings on Comet Churi

Comet's age revealed by the type of ice it carries

NASA's OSIRIS-REx spacecraft in thermal vacuum testing

Dawn's First Year at Ceres: A Mountain Emerges









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.