. Space Travel News .




.
STELLAR CHEMISTRY
NASA Spacecraft Reveals New Observations of Interstellar Matter
by Staff Writers
Washington DC (SPX) Feb 06, 2012

In a series of science papers appearing in the Astrophysics Journal , scientists report finding 74 oxygen atoms for every 20 neon atoms in the interstellar wind. In our own solar system, there are 111 oxygen atoms for every 20 neon atoms. This translates to more oxygen in any part of the solar system than in nearby interstellar space.

NASA's Interstellar Boundary Explorer (IBEX) has captured the best and most complete glimpse yet of what lies beyond the solar system. The new measurements give clues about how and where our solar system formed, the forces that physically shape our solar system, and the history of other stars in the Milky Way.

The Earth-orbiting spacecraft observed four separate types of atoms including hydrogen, oxygen, neon and helium. These interstellar atoms are the byproducts of older stars, which spread across the galaxy and fill the vast space between stars.

IBEX determined the distribution of these elements outside the solar system, which are flowing charged and neutral particles that blow through the galaxy, or the so-called interstellar wind.

"IBEX is a small Explorer mission and was built with a modest investment," said Barbara Giles, director of the Heliophysics Division at NASA Headquarters in Washington. "The science achievements though have been truly remarkable and are a testament to what can be accomplished when we give our nation's scientists the freedom to innovate."

In a series of science papers appearing in the Astrophysics Journal , scientists report finding 74 oxygen atoms for every 20 neon atoms in the interstellar wind. In our own solar system, there are 111 oxygen atoms for every 20 neon atoms. This translates to more oxygen in any part of the solar system than in nearby interstellar space.

"Our solar system is different than the space right outside it, suggesting two possibilities," says David McComas, IBEX principal investigator, at the Southwest Research Institute in San Antonio.

"Either the solar system evolved in a separate, more oxygen-rich part of the galaxy than where we currently reside, or a great deal of critical, life-giving oxygen lies trapped in interstellar dust grains or ices, unable to move freely throughout space."

The new results hold clues about the history of material in the universe. While the big bang initially created hydrogen and helium, only the supernovae explosions at the end of a star's life can spread the heavier elements of oxygen and neon through the galaxy. Knowing the amounts of elements in space may help scientists map how our galaxy evolved and changed over time.

Scientists want to understand the composition of the boundary region that separates the nearest reaches of our galaxy, called the local interstellar medium, from our heliosphere. The heliosphere acts as a protective bubble that shields our solar system from most of the dangerous galactic cosmic radiation that otherwise would enter the solar system from interstellar space.

IBEX measured the interstellar wind traveling at a slower speed than previously measured by the Ulysses spacecraft, and from a different direction. The improved measurements from IBEX show a 20 percent difference in how much pressure the interstellar wind exerts on our heliosphere.

"Measuring the pressure on our heliosphere from the material in the galaxy and from the magnetic fields out there will help determine the size and shape of our solar system as it travels through the galaxy," says Eric Christian, IBEX mission scientist, at NASA's Goddard Space Flight Center in Greenbelt, Md.

The IBEX spacecraft was launched in October 2008. Its science objective is to discover the nature of the interactions between the solar wind and the interstellar medium at the edge of our solar system.

Related Links
IBEX
Stellar Chemistry, The Universe And All Within It




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries



And it's 3... 2... 1... blastoff! Discover the thrill of a real-life rocket launch.



.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



STELLAR CHEMISTRY
The discovery of deceleration
Munich, Germany (SPX) Feb 06, 2012
Pulsars are among the most exotic celestial bodies known. They have diameters of about 20 kilometres, but at the same time roughly the mass of our sun. A sugar-cube sized piece of its ultra-compact matter on the Earth would weigh hundreds of millions of tons. A sub-class of them, known as millisecond pulsars, spin up to several hundred times per second around their own axes. Previous studi ... read more


STELLAR CHEMISTRY
Roscosmos Aims to Make Sea Launch Profitable

Feb 13 set as new date for Europe's Vega rocket

SpaceX flight to ISS could be late March: NASA

Launch of Proton-M with Dutch Satellite Postponed

STELLAR CHEMISTRY
Surface of Mars an unlikely place for life after 600 million year drought

Heavy Ions Killed Mars Probe

U.K. study: Mars surface too dry for life

Radio Doppler Tracking Continues at Cape York

STELLAR CHEMISTRY
Manned Moon Shot Possible by 2020

NASA Mission Returns First Video From Lunar Far Side

A Moon Colony by 2020

U.S. Presidential Hopeful Promises Moon Base by 2020

STELLAR CHEMISTRY
New Horizons Aims to Put Its Stamp on History

New Horizons Works through Winter Wakeup

The Rings of Pluto

Just A Three Year Cruise Left Before Pluto Flyby

STELLAR CHEMISTRY
Elements of ExoPlanets

Planets Circling Around Twin Suns

New super-Earth detected within the habitable zone of a nearby star

Russia to Start Own Search for Extrasolar Planets

STELLAR CHEMISTRY
Armadillo rocket flys high

SpaceX Test Fires Engine Prototype for Astronaut Escape System

NASA's J-2X Engine Kicks Off 2012 With Powerpack Testing

ATK Completes Third Space Act Agreement Milestone for Liberty under NASA's Commercial Crew Program

STELLAR CHEMISTRY
China announces new launch rockets

China's satellite navigation sector annual output predicted to reach 35 bln USD in 2015

China plans to launch 21 rockets, 30 satellites this year

Shenzhou 9 Behind the Curtain

STELLAR CHEMISTRY
Mission to Land on a Comet

Project NEOShield: Asteroid defence systems

Asteroids: The New 'It Mission' for Space Exploration

Vesta Science Program Continues At Low-altitude Mapping Orbit


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement