Space Travel News  
NASA's Fermi Telescope Discovers First Gamma-Ray-Only Pulsar

Clouds of charged particles move along the pulsar's magnetic field lines (blue) and create a lighthouse-like beam of gamma rays (purple) in this illustration. Credit: NASA
by Staff Writers
Washington DC (SPX) Oct 17, 2008
About three times a second, a 10,000-year-old stellar corpse sweeps a beam of gamma-rays toward Earth. Discovered by NASA's Fermi Gamma-ray Space Telescope, the object, called a pulsar, is the first one known that only "blinks" in gamma rays.

"This is the first example of a new class of pulsars that will give us fundamental insights into how these collapsed stars work," said Stanford University's Peter Michelson, principal investigator for Fermi's Large Area Telescope in Palo Alto, Calif.

The gamma-ray-only pulsar lies within a supernova remnant known as CTA 1, which is located about 4,600 light-years away in the constellation Cepheus. Its lighthouse-like beam sweeps Earth's way every 316.86 milliseconds. The pulsar, which formed about 10,000 years ago, emits 1,000 times the energy of our sun.

A pulsar is a rapidly spinning neutron star, the crushed core left behind when a massive sun explodes. Astronomers have cataloged nearly 1,800 pulsars. Although most were found through their pulses at radio wavelengths, some of these objects also beam energy in other forms, including visible light and X-rays. However, the source in CTA 1 only pulses at gamma-ray energies.

"We think the region that emits the pulsed gamma rays is broader than that responsible for pulses of lower-energy radiation," explained team member Alice Harding at NASA's Goddard Space Flight Center in Greenbelt, Md. "The radio beam probably never swings toward Earth, so we never see it. But the wider gamma-ray beam does sweep our way."

Scientists think CTA 1 is only the first of a large population of similar objects.

"The Large Area Telescope provides us with a unique probe of the galaxy's pulsar population, revealing objects we would not otherwise even know exist," says Fermi project scientist Steve Ritz, also at Goddard.

The pulsar in CTA 1 is not located at the center of the remnant's expanding gaseous shell. Supernova explosions can be asymmetrical, often imparting a "kick" that sends the neutron star careening through space. Based on the remnant's age and the pulsar's distance from its center, astronomers believe the neutron star is moving at about a million miles per hour -- a typical speed.

Fermi's Large Area Telescope scans the entire sky every three hours and detects photons with energies ranging from 20 million to more than 300 billion times the energy of visible light. The instrument sees about one gamma ray every minute from CTA 1, enough for scientists to piece together the neutron star's pulsing behavior, its rotation period, and the rate at which it is slowing down.

A pulsar's beams arise because neutron stars possess intense magnetic fields and rotate rapidly. Charged particles stream outward from the star's magnetic poles at nearly the speed of light to create the gamma-ray beams Fermi sees. Because the beams are powered by the neutron star's rotation, they gradually slow the pulsar's spin. In the case of CTA 1, the rotation period is increasing by about one second every 87,000 years.

"This observation shows the power of the Large Area Telescope," Michelson said. "It is so sensitive that we can now discover new types of objects just by observing their gamma-ray emissions."

NASA's Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy, along with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden, and the U.S.

Related Links
Fermi Gamma-ray Space Telescope
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Faint Gamma-Ray Bursts Do Actually Exist
Paris, France (ESA) Oct 14, 2008
Gamma-ray bursts, powerful glares of high-energy that wash through the Universe once every day or so are, for a brief time, the brightest objects in the gamma-ray sky. ESA's Integral gamma-ray observatory has observed several low-luminosity gamma-ray bursts, confirming the existence of an entire population of weaker bursts hardly noticed so far.







  • NASA And Air Force Work To Establish Hypersonic Science Centers
  • Iran To Conduct First Satellite Launch Soon
  • Outside View: Reusable rocket breakthrough
  • Grant For Eco-Friendly Rocket Engine

  • NASA To Webcast IBEX Spacecraft Launch
  • New ASTRA 1M Satellite To Be Launched On 31 October
  • Ariane 5 Is Readied For A Dual-Payload Mission
  • India To Have New Launchpad For Proposed Manned Mission

  • NASA's Space Shuttle Atlantis Rolls Off Launch Pad Monday
  • NASA to discuss next shuttle mission
  • Trouble on Hubble telescope delays space shuttle launch: NASA
  • Astronauts Prepare For Countdown Rehearsal

  • Expedition 18 Crew Docks With Space Station
  • Expedition 18 Crew Launches From Baikonur
  • Space station crew might not be expanded
  • Expedition 18 Crew To Launch From Baikonur

  • Argentina Wants Russian Space Assistance
  • Russian Space Tourist To Lose Out To Kazakh Astronaut
  • India Not Engaged In Space Race With China
  • NASA Selects ITT For Space Communications Network Services

  • China To Launch FY-4 Weather Satellite Around 2013
  • Shenzhou 7 Astronauts In Good Health
  • Chinese Scientists Start Studying Samples From Shenzhou-7
  • Analysis: China space launch raises fears

  • VIPeR Robot Demonstrates Exceptional Agility
  • iRobot Receives Order From TARDEC For iRobot Warrior 700
  • iRobot Awarded US Army Contract For Robotic Systems
  • Robots Learn To Follow

  • Phoenix Mars Mission Honored By Popular Mechanics
  • ESA Closes In On The Origin Of Mars' Larger Moon
  • HiRISE Camera Reveals Rare Polar Martian Impact Craters
  • Young Researchers To Explore The Mysteries Of Our Solar System

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement