Space Travel News  
ABOUT US
Mutant ferrets offer clues to human brain size
by Staff Writers
Chevy Chase MD (SPX) Apr 16, 2018

illustration only

A genetically engineered ferret could help reveal how humans got their big brains.

By inactivating a gene linked to abnormally small brain size in humans, researchers have created the first ferret with a neurological mutation. Although the original impetus of the work was to study human brain disease and development, says Howard Hughes Medical Institute (HHMI) Investigator Christopher Walsh, the results also shed light on how the human brain expanded during the course of evolution.

"I'm trained as a neurologist, and study kids with developmental brain diseases," says Walsh, of Boston Children's Hospital. "I never thought I'd be peering into the evolutionary history of humankind."

He and colleagues, along with Byoung-Il Bae's lab at Yale University, report the work April 11, 2018, in the journal Nature.

Usually, the outer layer of the human brain, called the cerebral cortex, is large and highly folded. But things can go wrong when the embryonic brain is being built, resulting in a much smaller cortex. This occurs in microcephaly, a condition where babies have significantly smaller heads and brains than normal. Microcephaly can have a genetic root, and has also been linked to recent outbreaks of the Zika virus.

Researchers have identified genes that play a role in the condition, some of which are essential for cerebral cortex growth during embryonic development. Mutations in a gene called ASPM, for example, reduce the size of a human brain by up to 50 percent, making it about the same size as a chimpanzee's brain.

Scientists have studied microcephaly in mice to better understand the condition in humans, but learning about human disorders from mice can be tricky. A mouse brain is a thousand times smaller than a human brain, and lacks several kinds of brain cells that are abundant in humans.

Inactivating Aspm in mice shrinks their brains by only about 10 percent. It's such a subtle defect that these animals, called Aspm knockout mice, provide limited insight into human cortical development, says Walsh, who leads the Allen Discovery Center at Boston Children's Hospital and Harvard Medical School.

This prompted Bae and Walsh's team to genetically inactivate, or "knock out," Aspm in a mammal with a larger, more convoluted cortex, more like that of humans. Ferrets fit that bill because they are a large-brained mammal that breeds quickly and easily, Walsh says. "On the face of it, ferrets may seem a funny choice, but they have been an important model for brain development for thirty years."

Still, scientists haven't done much research on ferret genetics. The whole idea of an Aspm knockout ferret was considered new - and a little risky. In 2013 Walsh pitched his project to HHMI and got the budget boost he needed to make it happen.

His team's Aspm knockout ferret is only the second knockout ferret ever created. One of the study's coauthors, John Engelhardt of the University of Iowa, made the first nearly 10 years ago to study cystic fibrosis.

Walsh, Bae, and their colleagues discovered that their ferrets model human microcephaly much more accurately than do mice. The ferrets displayed severely shrunken brains, with up to 40 percent reduced brain weight. And, as in humans with the condition, cortical thickness and cell organization were preserved.

What's more, the ferrets reveal a possible mechanism for how human brains have grown over evolutionary time. Over the last seven million years, human brain size has tripled. Most of this expansion has occurred within the cerebral cortex.

Indeed, in the mutant ferrets, researchers traced the cerebral cortex deficits to a type of stem cell called outer radial glial cells (ORGs). ORGs are created by stem cells capable of making all sorts of different cells in the cortex.

Walsh's team found that Aspm regulates the timing of the transition between these stem cells and ORGs. This affects the ratio of ORGs to other types of cells. Thus, tweaking Aspm can actually dial up or down the number of nerve cells in the brain, Walsh says, without having to change many genes all at once.

That's a clue that the gene could have played a role in the evolution of the human brain. "Nature had to solve the problem of changing the size of the human brain without having to reengineer the whole thing," Bae says.

Aspm codes for a protein that is part of a cellular complex called the centriole. Walsh and colleagues found that knocking out this gene disturbs the centriole's organization and function, suggesting an underlying biochemical mechanism for the brain deficits seen in the ferrets.

In humans, a few genes associated with centriole proteins, including ASPM, have undergone recent evolutionary changes. These genes might even be important for distinguishing humans from Neanderthals and our closest living relatives, chimpanzees, Walsh says.

Overall, he says, the study demonstrates the advantages of using ferrets to study some human neurological disorders. It also points to new mechanisms at work in the brain development of individuals and in species like humans over evolutionary time.

"It makes sense in retrospect," Walsh says. "The genes that put our brains together during development must have been the genes that evolution tweaked to make our brains bigger."

Matthew B. Johnson et al., "Aspm knockout ferret reveals an evolutionary mechanism governing cerebral cortical size." Nature. Published online April 11, 2018.


Related Links
Howard Hughes Medical Institute
All About Human Beings and How We Got To Be Here


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ABOUT US
Infants recognize links between vocal, facial cues
Washington DC (UPI) Apr 12, 2018
In the first six months of life, babies can draw correlations between visual and vocal cues. Before infants can talk, they use posture, voice and facial expressions to communicate their emotions. New research suggests babies can also interpret emotional cues. Previous studies have found babies show a preference for happy faces and voices during their first six months of life, and can differentiate between the vocal and visual expressions of happiness from cues representing fear, sadness ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ABOUT US
ABOUT US
ExoMars poised to start science mission

UAH gets NASA early-stage funding for "Marsbees" concept

MIPT physicists design a model of Martian winter

NASA's Idea to Send Swarm of Robots to Mars

ABOUT US
NAU planetary scientist's study suggests widespread presence of water on the Moon

Indian space agency postpones second Moon mission to October

Second blue moon of the year is last until 2020

Roscosmos, NASA to set common standards for first lunar orbit station

ABOUT US
SSL to provide of critical capabilities for Europa Flyby Mission

Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks

ABOUT US
Newly discovered salty subglacial lakes could help search for life in solar system

First Interdisciplinary Conference on Habitability in early solar system

Outback Radio Telescope Listens In on Interstellar Visitor

Artificial intelligence helps to predict likelihood of life on other worlds

ABOUT US
Deep Space Industries to provide Comet satellite propulsion for BlackSky, LeoStella

Ariane 5 launches two satellites

Rocket Lab 'Its Business Time' launch window to open 20 April 2018 NZT

Student Launch Teams Rendezvous in Huntsville for NASA Competition

ABOUT US
China's 'space dream': A Long March to the moon

China says Earth-bound space lab to offer 'splendid' show

Tiangong-1 expected to burn up on reentering atmosphere

Earth-bound Chinese spacelab plunging to fiery end

ABOUT US
Trail of glassy beads helps scientists track down missing crater

Here, There and Everywhere: Across the Universe with the Beatles

A star disturbed the comets of the solar system in prehistory

Russian scientists use lasers to destroy mini asteroids









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.