Space Travel News  
TECH SPACE
Moving furniture in the micro-world
by Staff Writers
Konstanz, Germany (SPX) Jun 10, 2022

Schematic illustration of the moire pattern evolution under the influences of external forces and torques for a circularly shaped colloidal cluster interacting with a periodically structured surface. Regions where the particles of the cluster are close to the bottom of the wells of the patterned surface appear as dark-coloured regions in the respective moire patterns. The width of the arrows represents the amount of force and/or torque required to overcome the static friction between cluster and surface.

Have you ever noticed when moving furniture that heavy objects are easier to move if you rotate them at the same time as you push? Many people intuitively do this right. An international research team from Konstanz (Germany), Trieste and Milan (Italy) has now investigated this phenomenon - the reduction in static friction caused by simultaneous rotation - on the microscopic scale.

In their recent study in Physical Review X, the researchers found that the reduction in static friction of a microscopic object on a crystalline surface can be described by moire patterns, which occur when periodic patterns superimpose. Based on this concept, the researchers predict an unusual state, in which microscopic objects can be set in rotation by applying a minimal amount of torque. In the future, this could enable the construction of micro-machines with ultra-low static friction against rotation.

Setting objects in motion
To set an object in motion, one needs to push it to overcome its static friction with the underlying surface. This holds true even if the touching surfaces are very smooth. Daily experience teaches us that static friction is much smaller when the object is not only pushed, but simultaneously rotated. Even though renowned scholars, such as Leonardo da Vinci, have already studied friction phenomena more than 500 years ago, the relation between static friction forces and torques is still not fully understood. This is quite remarkable, given that rotational friction originates from the same interaction between an object and the underlying surface as the well-explored translational friction.

The complex relationship between static translational and rotational friction becomes even more intriguing on the microscopic scale, where flat contacts involve only a few hundred to a few thousand atoms. "For example, such micro-contacts occur in tiny mechanical devices - known as micro-electromechanical systems (MEMS) - whose behaviour is dominated by frictional effects," says Professor Clemens Bechinger, head of the research team and professor of experimental physics at the University of Konstanz, providing an example of where frictional effects play an important role on the microscopic scale. Rotational friction and its interplay with translational friction for such small contacts has remained rather unexplored, because it is technically very challenging to apply well-controlled torques to rotating microscale objects.

Moire patterns are the key
In their recent study - combining experimental and theoretical approaches - the researchers from Konstanz, Trieste and Milan have overcome this challenge and investigated rotational friction and its interplay with translational friction for microscopic contacts. "For our experiments, we created crystalline clusters made of micron-sized magnetic spheres and brought them into contact with a structured surface with regularly repeating wells," Dr Xin Cao, one of the lead authors of the study and Humboldt Fellow in the working group of Clemens Bechinger, describes the starting point of the experiments. He continues: "This setting mimics the contact area between two atomically flat surfaces."

The two-dimensional clusters - with contacts to the surface consisting of 10 to 1000 spherical particles - were then set in rotational motion using a highly controllable rotating magnetic field. The minimum torque required to make the respective cluster rotate corresponds to the static rotational friction, similar to the static translational friction, which characterizes the minimum force required to achieve a translational motion of the cluster.

In their study, the researchers found that the interplay of rotational and translational friction can be understood through the properties of what is known as moire patterns. These patterns arise when two or more periodic structures superimpose. "Optical moire patterns can be observed, for example, when a fine-mesh curtain wrinkles and individual layers of the curtain overlap," explains Dr Andrea Silva, second lead author of the study and Physicist at the International School for Advanced Studies (SISSA) in Trieste. "The resulting patterns are extremely sensitive to minute relative movements and exhibit higher-level geometric structures that are not present in the overlapping structures themselves."

The advantage of simultaneous rotation
Coming back to the experiments, Andrea Silva describes: "The contact between the particle cluster and the underlying surface in areas where the periodicities in the structure of both objects match can be compared to eggs in an egg carton." Without applying external forces or torques, this area of structural overlap is at a max, which means that a large number of particles of the cluster are close to the bottom of the wells of the patterned surface, resulting in high static friction.

When a force is applied to the cluster to push it in a particular direction, the area of structural overlap shifts to the edge of the contact area. As a result, it becomes smaller. However, a large number of particles remain "stuck" in the wells of the substrate, so that a comparatively large force is required to overcome the cluster's resistance against motion and to depin it from the substrate. If, on the other hand, the cluster is twisted with a torque, the area of overlap shrinks symmetrically. "This makes it much easier to push the cluster and set it in motion, since the area of structural overlap has already been significantly reduced by the applied torque," Xin Cao says, explaining how simultaneous pushing and rotating reduces static friction.

An astonishing prediction
Based on the properties of the observed moire patterns the physicists were not only able to explain why an additional rotation facilitates the translation of microscopic objects, but also to make predictions about the dependence of the static friction against rotations on the cluster size: When the latter exceeds a certain threshold, the static friction against rotations decreases strongly, resulting in a state of ultra-low static friction for very large clusters. "Such a low-friction state can be highly relevant for the fabrication and functioning of small mechanical devices - from the atomic to the micro-scale - bringing us closer to realizing smaller and more efficient machines," concludes Clemens Bechinger.

Research Report:Moire-pattern evolution couples rotational and translational friction at crystalline interfaces.


Related Links
University of Konstanz
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Meta's Quest VR gear to let people 'hang out' in fake worlds
San Francisco (AFP) June 11, 2022
Meta on Friday said that it is adding the ability to easily socialize in virtual reality with an update to its Quest 2 headsets in another step toward the metaverse. The tweak heading for the latest model Quest from Meta-owned Oculus will let wearers hop into virtual settings with friends, chief Mark Zuckerberg said in a post on his Facebook page. "I'm here to announce the ability to, as soon as you put on your Quest 2 headset, to have people hang out with you in a social environment," Zuckerber ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
TECH SPACE
Keeping Our Sense of Direction: Dealing With a Dead Sensor

Bacterial cellulose enables microbial life on Mars

Balmy Days on Mars - Sol 3496

Beautiful Weekend Views - Sols 3493-3495

TECH SPACE
Why does the Moon look close some nights and far away on other nights?

Aegis Aerospace and Intuitive Machines team up for lunar science services

NASA selects new instruments for priority Artemis science on Moon

Frame for Artemis IV

TECH SPACE
NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors

Bern flies to Jupiter

Traveling to the centre of planet Uranus

TECH SPACE
Asteroid samples contain 'clues to origin of life': Japan scientists

Geology from 50 light-years away

Close encounter more than 10,000 years ago stirred up spirals in accretion disk

Plato's cave: vacuum test for exoplanet detection

TECH SPACE
NASA Supplier Completes Manufacturing Artemis III SLS Booster Motors

SpaceX launches Nilesat 301 satellite, recovers Falcon 9 first stage

NRL CIRCE spacecraft to be part of historic UK launch

NASA rolls SLS moon rocket back out to Kennedy Space Center launch pad

TECH SPACE
Shenzhou XIV astronauts transporting supplies into space station

Three Chinese astronauts arrive at space station

China sends three astronauts to complete space station

China sends three astronauts to Tiangong Space Station

TECH SPACE
NASA's Lucy Mission Continues Solar Array Deployment Process

Planetary Defense exercise uses Apophis as Hazardous Asteroid Stand-In

Asteroid Institute uses cloud-based astrodynamics platform to find and track asteroids

New meteor shower? How many meteors will I see, really?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.