Space Travel News  
WOOD PILE
More rain leads to fewer trees in the African savanna
by Staff Writers
Princeton NJ (SPX) Oct 20, 2015


Princeton University researchers might have finally provided a solution to the ecological riddle of why tree abundance on Africa's grassy savannas diminishes in response to heavy rainfall despite scientists' expectations to the contrary. The researchers found that the ability of grasses to more efficiently absorb and process water gives them an advantage over trees such as the acacia (pictured). Image courtesy Kev Moses, Licensed under CC BY 2.0. For a larger version of this image please go here.

In 2011, satellite images of the African savannas revealed a mystery: these rolling grasslands, with their heavy rainfalls and spells of drought, were home to significantly fewer trees than researchers had expected. Scientists supposed that the ecosystem's high annual precipitation would result in greater tree growth. Yet a 2011 study found that the more instances of heavy rainfall a savanna received, the fewer trees it had.

To this ecological riddle, Princeton University researchers might have finally provided a solution. In a study published in the Proceeding of the National Academy of Sciences, researchers use mathematical equations to show that physiological differences between trees and grasses are enough to explain the curious phenomenon.

The researchers found that under very wet conditions, grasses have an advantage because they can quickly absorb water and support high rates of photosynthesis, the process by which plants convert sunlight into energy. Trees, with their tougher leaves and roots, are able to survive better in dry periods because of their ability to withstand water stress. But this amounts to a disadvantage for trees in periods of intense rainfall, as they are comparatively less effective at utilizing the newly abundant water.

"A simple way to view this is to think of rainfall as annual income," said first author Xiangtao Xu, a graduate student in the laboratory of second author David Medvigy, a Princeton assistant professor of geosciences. "Trees and grasses are competing over the amount of money the savanna gets every year and it matters how they use their funds."

Xu explained that when the "bank" is full with rain, grasses, which build relatively cheap structures, thrive. When there is a deficit of rain, the trees suffer less than grasses and therefore win out.

The problem is that several high-profile papers over the past decade have predicted that periods of intense rainfall will become more frequent around the globe, especially in tropical areas, Xu said. The Princeton research suggests that these global climate changes will eventually lead to a reduced abundance of trees on the savannas.

"Because the savanna takes up a large area, which is home to an abundance of both wild animals and livestock, this will influence many people who live in those areas," Xu said. "It's important to understand how the biome would change under global climate change."

The study highlights the importance of understanding the pattern and intensity of rainfall, not just the total annual precipitation, which is where most research in this area has focused, Xu said. In 50 years, a region may still experience the same overall amount of precipitation. If the intensity changes, however, that will affect the abundance of grasses and trees. This, in turn, will influence the herbivores that subsist on them, and other animals in the biome - essentially, affecting the entire ecosystem.

Xu, Medvigy and co-author Ignacio Rodriguez-Iturbe, Princeton's James S. McDonnell Distinguished University Professor of Civil and Environmental Engineering, created a numerical model that mimicked the actual mechanistic functions of the trees and grasses. They put in equations for how both plants photosynthesize, absorb water and even steal water from one other. These equations were coupled with a random rainfall generator based on rainfall parameters derived from field observations across the savanna.

This configuration allowed the team to observe how the plants would respond under different climate conditions. Past analyses of the savanna have only considered annual or monthly rainfall, but understanding how rainfall is distributed in different areas on a daily scale is critical in the savanna, Xu said. Daily rainfall intensity determines who will win in a competition between grasses and trees for the finite resource of water.

"We put realistic rainfall schemes into the model, then generated corresponding grass or tree abundance, and compared the numerical results with real-world observations," Xu said.

The researchers then tested the model using field measurements from a well-studied savanna in Nylsvley, South Africa, and nine other sites along the Kalahari Transect, which is a sort of border of atmospheric and climate activity in southern Africa. The researchers also used remote-sensing data across the whole continent. For each site, the model accurately predicted the tree abundance that the researchers observed.

Gaby Katul, a professor of hydrology and micrometeorology at Duke University, said that the Princeton research makes apparent the local effect of rainfall variation on plant dominance and an ecosystem's composition.

"This work offers evidence of how shifts in rainfall affect the tree-grass interaction because rainfall variations are large," said Katul, who was not involved in the research. "The approach can be used not only to 'diagnose' the present state where rainfall pattern variations dominate but also offers a 'prognosis' as to what may happen in the future."

The researchers' finding that grasses win out in periods of intense rainfall rejects the long-held theory of root-niche separation, Xu said, which predicts that trees will outcompete grasses under intense rainfall when the soil becomes saturated because their heavy roots penetrate deeper into the ground.

"This hypothesis ignores the fact that grasses and trees have different abilities for absorbing and utilizing water," Xu said. "And that's one of the most important parts of what we found. Grasses are more efficient at absorbing water, so in a big rainfall event, grasses win."

Xu said it would be difficult to predict whether changes in grass and tree distribution would have a positive or negative impact on the savanna. But he did say that more grasses mean more support for cows and horses and other herbivores. On the other hand, fewer trees mean less carbon dioxide is removed from the atmosphere, and a loss of habitat for birds and other animals that rely on the trees.

The model does, however, offer an entry point for better policies and decisions to help communities adapt to future changes. "It's just like with the weather," Xu said. "If you don't read the weather report, you have to take what nature gives you. But if you know in advance that it will rain tomorrow, you know to bring an umbrella."

The paper, "Relation between rainfall intensity and savanna tree abundance explained by water use strategies," was published Oct. 5 by the Proceedings of the National Academy of Sciences. The work was supported by the Princeton Environmental Institute and the Andlinger Center for Energy and the Environment at Princeton University.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Princeton University
Forestry News - Global and Local News, Science and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WOOD PILE
Protected and intact forests lost at an alarming rate around the world
Espoo, Finland (SPX) Oct 16, 2015
Protected and intact forests have been lost at a rapid rate during the first 12 years of this century. According to researchers at Aalto University, Finland, 3% of the protected forest, 2.5% of the intact forest, and 1.5% of the protected intact forest in the world were lost during 2000 - 2012. These rates of forest loss are high compared to the total global forest loss of 5% for the same time p ... read more


WOOD PILE
Ariane 5 is delivered for Arianespace's sixth heavy-lift mission of 2015

ORBCOMM Announces Launch Window For Second OG2 Mission

10th Anniversary of the Final Titan

China puts new communication satellite into orbit for HK company

WOOD PILE
Landing site recommended for ExoMars 2018

You too can learn to farm on Mars

The Martian Astrobiologist

Opportunity parked for solar panels to charge up for winter

WOOD PILE
Watch worn by US astronaut on Moon sells for $1.6 mn

Europe-Russia Lunar mission will make them friends again

Mound near lunar south pole formed by unique volcanic process

Lunar Pox

WOOD PILE
Maneuver directs New Horizons towards next potential target

Mysterious Pluto moon Kerberos imaged by New Horizons

Scientists predict cool new phase of superionic ice

New Horizons team publishes first research paper presenting numerous Pluto system findings

WOOD PILE
NASA's K2 Finds Dead Star Vaporizing a Mini 'Planet'

Cosmic 'Death Star' is destroying a planet

Most earth-like worlds have yet to be born, according to theoretical study

Airbus DS ready to start testing exoplanet tracker CHEOPS

WOOD PILE
NASA Completes Critical Design Review for Space Launch System

US expert questions ban on Russian rocket engine purchases

The Mysteries of Astronautics

Russian Rocket Engine Delivery to China May Be Agreed by December

WOOD PILE
The Last Tiangong

China aims to go deeper into space

Latest Mars film bespeaks potential of China-U.S. space cooperation

Exhibition on "father of Chinese rocketry" opens in U.S.

WOOD PILE
Comet Lovejoy found to emit alcohol, sugar into space

NASA's OSIRIS-REx Spacecraft Begins Environmental Testing

Halloween Asteroid a Treat for Radar Astronomers

Comet Encke: A solar windsock observed by NASA's STEREO









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.