Space Travel News  
SOLAR DAILY
Molecular additives enhance mechanical properties of organic solar cell material
by Staff Writers
Bethlehem PA (SPX) Aug 18, 2020

Showcasing research from Professor Ganesh Balasubramanian's laboratory (Group for Interfacial and Nanoengineering), Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, USA. Despite the recent advances in the power conversion efficiency of organic solar cells, an insight into the processing-driven thermo-mechanical stability of bulk heterojunction active layers is still warranted. Correlating the elasto-morphology with device performance requires a deeper understanding of the molecular-level physics, as presented in this research on the interplay between processing, thermodynamics and mechanical stability of typical photoactive layers in organic solar cells.

Organic solar cells are ideal for use in flexible electronics because of the inherently malleable nature of semiconducting polymers. Recent research on the interplay between processing, thermodynamics and mechanical stability of typical photoactive layers in organic cells is providing a deeper understanding of these high-potential materials.

Ganesh Balasubramanian, P.C. Rossin assistant professor of Mechanical Engineering and Mechanics at Lehigh University, and his graduate student Joydeep Munshi recently set out to understand how stable these materials are when deformed, and whether the promising properties can be realized under harsh loading conditions when the solar cells may be subject to stretching and compression.

Through computational experiments using the leadership class computing resources in Frontera, the team demonstrated that adding small molecules to the semiconducting polymer blend enhances the performance and stability of material used in organic solar cells. They predict this is also true for organic solar cell material more generally.

The study is described in an article, "Elasto-morphology of P3HT:PCBM bulk heterojunction organic solar cells" featured on the back cover of Soft Matter. Additional authors include: professors TeYu Chien at the University of Wyoming and Wei Chen, at Northwestern University.

"Based on previous literature, we anticipated that variations in the materials processing parameters would influence the structure as well as the thermal and mechanical properties of these solar cells," says Balasubramanian. "However, the finding that presence of small molecular additives can augment the mechanical properties is new knowledge gained from this work."

The team demonstrated that, in addition to the solar-to-electrical power conversion efficiency, the mechanical stability and flexibility of typical organic solar cells is significantly impacted by the presence of molecular additives.

"This could prove crucial towards the commercialization of organic solar cells," says Balasubramanian.

The results were achieved by performing large scale molecular simulations in the supercomputer Frontera, located at the Texas Advanced Computing Center (TACC) at the University of Texas at Austin), which is the world's fastest academic supercomputer.

The predictions consisted of the deformation mechanisms of the polymer blend under straining conditions as well as examining the structure/morphology of the material upon loading. Balasubramanian's team has been among the first to utilize Frontera.

While similar approaches have been considered for interrogating the properties of organic photovoltaic materials, the correlation between the material structure and elastic properties had not been done before, according to Balasubramanian.

By adding molecular additives to the polymeric blends, advanced solar power materials and devices can be fabricated that sustain extreme operational stress-strain conditions while delivering superior performance.

He adds: "The research has the potential to provide new directions for scientific practices in this field of materials and energy research."

Research paper


Related Links
Lehigh University
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
New solar facility is expected to offset 100 percent of Northrop Grumman's electricity use in Virginia
Falls Church VA (SPX) Aug 18, 2020
Northrop Grumman Corporation has entered into a 15-year virtual power purchase agreement (VPPA) with Dominion Generation, Inc., a subsidiary of Dominion Energy, that enables the construction of a new 62.5 megawatt solar facility in Orange County, Virginia. Once operational in 2022, it is expected that the new solar facility will add enough renewable energy to the local grid to match 100 percent of Northrop Grumman's electricity use in the Commonwealth across its manufacturing and office operations ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
SOLAR DAILY
Ingenuity Mars Helicopter recharges its batteries in flight

NASA scientists leverage carbon-measuring instrument for Mars studies

Rice researchers use InSight for deep Mars measurements

NASA's MAVEN observes Martian night sky pulsing in ultraviolet light

SOLAR DAILY
China's Chang'e-4 probe resumes work for 21st lunar day

India's Chandrayaan-2 images Sarabhai Crater

Russian Cosmonauts Could Be Going to the Moon Without a Super-Heavy Launch Vehicle

Study reveals composition of gel-like lunar substance

SOLAR DAILY
Ganymede covered by giant crater

Huge ring-like structure on Ganymede's surface may have been caused by violent impact

Inside the ice giants of space

Ammonia sparks unexpected, exotic lightning on Jupiter

SOLAR DAILY
Microbes in the seabed survive on little energy

NASA's planet hunter completes its primary mission

Lava oceans may not explain the brightness of some hot super-Earths

Hubble uses Earth as a Proxy for identifying oxygen on exoplanets

SOLAR DAILY
NASA begins installing orion adapter for first Aartemis lunar flight

NASA, SpaceX targeting October for next astronaut launch

Ariane 5's third launch of 2020

Aerojet Rocketdyne to provide ULA's Vulcan Centaur Key Propulsion for future Air Force Launch Services

SOLAR DAILY
China seeks payload ideas for mission to moon, asteroid

China marching to Mars for humanity's better shared future

From the Moon to Mars: China's long march in space

Tianwen 1 probe to soon blast off for Mars

SOLAR DAILY
Bright hydrothermal deposits on dwarf planet Ceres have a style all their own

Surrey academics develop a new method to determine the origin of stardust in meteorites

Bright areas on Ceres come from salty water below

Fragments of asteroids may have jumped the "Jupiter Gap"









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.