Space Travel News  
WATER WORLD
Models overestimate rainfall increases due to climate change
by Staff Writers
Livermore CA (SPX) Dec 15, 2015


Global precipitation increase per degree of global warming at the end of the 21st century may be about 40 percent smaller than what the models currently predict. Image courtesy of Haley Luna. For a larger version of this image please go here.

Lawrence Livermore researchers and collaborators have found that most climate models overestimate the increase in global precipitation due to climate change.

Specifically, the team looked at 25 models and found they underestimate the increase in absorption of sunlight by water vapor as the atmosphere becomes moister, and therefore overestimate increases in global precipitation. The team found global precipitation increase per degree of global warming at the end of the 21st century may be about 40 percent smaller than what the models, on average, currently predict. The research appears in the journal Nature.

Evaluation of model-predicted global precipitation change with actual precipitation observations is difficult due to uncertainties arising from many sources, including insufficient spatial and historical data coverage. As an alternative approach, the team, made up of LLNL scientist Mark Zelinka and colleagues from the University of California, Los Angeles, including lead author Anthony DeAngelis, evaluated model-simulated global precipitation change through consideration of the physical processes that govern it.

The team found that the increase in global precipitation simulated by models is strongly controlled by how much additional sunlight is absorbed by water vapor as the planet warms: Models in which more sunlight is absorbed by water vapor tend to have smaller increases in precipitation.

They demonstrated that model-to-model differences in increased absorption of sunlight were not controlled by how much their humidity increased, but by how much additional sunlight was trapped in the atmosphere for a given increase in humidity. Conveniently, this quantity can be measured from space, allowing the team to assess how well the models capture the physics controlling changes in global precipitation.

"This comparison with observations allowed us to see quite clearly that most models underestimate the increased absorption of sunlight as water vapor increases," Zelinka said. "Because this acts as such a strong lever on global precipitation changes, the models are likely overestimating the increase in global precipitation with global warming."

The intensification of the hydrologic cycle is an important dimension of climate change that can have significant impacts on human and natural systems, perhaps more so than rising temperatures alone, according to Zelinka.

Commonly measured by the increase in globally averaged precipitation per degree of surface warming, hydrologic cycle intensification predictions vary substantially across global climate models.

"We sought to understand the sources of this uncertainty and use the best available observations to narrow- in on the most likely response," Zelinka said. "We cannot expect to make useful predictions of local water cycle changes that are most relevant for societal impacts if we do not understand and accurately simulate the change in globally averaged precipitation."

The absorption of sunlight by water vapor is vital to understand future global precipitation changes.

Condensational heating by precipitation, absorption of sunlight by water vapor and fluxes from the Earth's surface all combine to heat the atmosphere, keeping it in energy balance with cooling due to thermal emission up to space and down to the Earth's surface.

As the planet warms and the atmosphere emits more thermal radiation, the heating components also must increase to maintain atmospheric energy balance, and the two that matter most are absorption of sunlight and precipitation. The more heating provided by absorption of sunlight as the planet warms, the less heating is required by precipitation increases.

The study notes that more reliable predictions of future precipitation change can be made by improving the representation of how radiation is transmitted through the atmosphere in global climate models. The models that have more sophisticated representations better agree with observations.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Lawrence Livermore National Laboratory
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
Deep core of African lake gives insight to ancient lake levels, biodiversity
Syracuse NY (SPX) Dec 14, 2015
Syracuse Earth sciences professor Christopher Scholz and former Ph.D. student Robert Lyons have an unprecedented glimpse into the past of a lake with explosive biodiversity. Along with colleagues from six other universities, Scholz and Lyons have unearthed a 380-meter-deep time capsule from Lake Malawi. Lyons says the core shows that "East African moisture history over the last 1.3 million years ... read more


WATER WORLD
45th Space Wing supports NASA's Orbital ATK CRS-4 launch

Orbital cargo ship blasts off toward space station

Virgin Galactic Welcomes 'Cosmic Girl' To Fleet Of Space Access Vehicles

DXL-2: Studying X-ray emissions in space

WATER WORLD
Mars Mission Team Addressing Vacuum Leak on Key Science Instrument

Letter to Mars? Royal Mail works it out for British boy, 5

European payload selected for ExoMars 2018 surface platform

ExoMars has historical, practical significance for Russia, Europe

WATER WORLD
XPRIZE verifies moon express launch contract, kicking off new space race

Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

WATER WORLD
Pluto's close-up, now in color

New Visualization of Space Environment at Pluto

New Horizons' catches a wandering Kuiper Belt Object not far off

Pluto surface details revealed in best images yet

WATER WORLD
Student helps discover new planet, calculates frequency of Jupiter-like planets

What kinds of stars form rocky planets

Half of Kepler's giant exoplanet candidates are false positives

Exiled exoplanet likely kicked out of star's neighborhood

WATER WORLD
NASA Marshall Prepares for SLS Foam Testing

LISA Pathfinder carries advanced NASA thruster tech

Bezos takes big step towards reusable commercial space flight

Progress continues on test version of SLS Connection Hardware

WATER WORLD
China launches new communication satellite

China's indigenous SatNav performing well after tests

China launches Yaogan-29 remote sensing satellite

China's scientific satellites to enter uncharted territory

WATER WORLD
Robot arm simulates close approach of ESA's asteroid mission

New clues to Ceres' bright spots and origins

New US space mining law to spark interplanetary gold rush

Dawn spiraling in towards Ceres









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.