Space Travel News  
SOLAR DAILY
Minding the gaps to boost perovskite performance
by Staff Writers
Thuwal, Saudi Arabia (SPX) Aug 19, 2021

A technique to improve some of the defects that limit the performance of perovskite solar materials has been devised by KAUST researchers.

A multifunctional molecule that plugs various atomic-scale defects in perovskite solar materials can significantly boost the longevity and electrical output of this promising solar technology, KAUST researchers have shown.

Perovskites are an alternative solar-cell material to silicon. They typically comprise a combination of negatively charged iodine or bromine ions and positively charged lead and organic ions. Adjusting the ion combination can generate wide bandgap perovskites that capture the solar wavelengths that silicon does not efficiently absorb. This suggests the two materials could be combined in tandem cells to capture even more energy from the Sun.

However, perovskites inevitably feature defects, such as where a particular ion did not slot into place during fabrication, leaving a gap in the structure. These reactive sites can contribute to rapid performance decline - unless they can be plugged. "Defect passivation is very important for improving the long-term stability of perovskite solar cells," says Furkan Isikgor, a researcher in Stefaan De Wolf's group.

Defect sites in perovskites can be positively or negatively charged depending on which ion is missing, but chemical additives for defect passivation can typically plug one type of defect or the other. But a molecule called phenformin hydrochloride (PhenHCl) overcomes this problem, Isikgor, De Wolf and their colleagues have shown.

"PhenHCl works very well owing to its multifunctional structure," Isikgor says. The molecule consists of an electro-positive ammonium head group that can plug negatively charged defects and an electro-negative amine and imine group body to plug positive gaps.

The researchers showed that PhenHCl boosted the power conversion efficiencies (PCEs) of wide bandgap perovskites from 16.7 percent in untreated cells up to 20.5 percent in treated cells. "Moreover, PhenHCl passivation improves the PCE of textured perovskite/silicon tandem solar cells from 25.4 percent to 27.4 percent," Isikgor says.

PhenHCl passivation also significantly improved the stability of the perovskite solar cell. "Under continuous light soaking, the PhenHCl-passivated device retained 80 percent of its post-burn-in efficiency for around 106 hours of operation," Isikgor says. The untreated device retained 80 percent of its post-burn-in efficiency for only 5 hours.

"Our simple holistic defect-passivation strategy has drastically improved the semiconductor quality of solution-processed perovskites," says De Wolf. "Passivating the different types of defects that may be present in perovskites with a single molecule is highly attractive for industry," he adds.

The next step will be to integrate PhenHCl passivation with scaled-up perovskite production. "Simultaneously, we are working on further improvements in device performance and stability through extensive outdoor testing," De Wolf adds.

Research Report: "Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation"


Related Links
King Abdullah University Of Science and Technology (KAUST)
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Solar cells combining perovskite, silicon capture more of the sun's energy
Washington DC (UPI) Aug 17, 2021
The best solar cells currently capture just more than a quarter of the sun's energy. Much of sun's power potential remains untapped. For decades, scientists have been trying to expand the efficiency limit of both perovskite and silicon solar cells. Scientists at Oxford PV, a perovskite research firm in Britain, found they could beat the current efficiency barrier by combining the two technologies. Perovskite is a calcium titanium oxide mineral with valuable optoelectronic properti ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
SOLAR DAILY
NASA's Ingenuity helicopter completes 12th Mars flight

Aviation Week awards NASA's Ingenuity Mars Helicopter with laureate

Is Curiosity exploring surface sediments or lake deposits

NASA begins recruitment for long-duration Mars Mission Analog Study

SOLAR DAILY
Advanced Space passes preparatory test for pathfinder mission to the moon

Lunar samples solve mystery of the moon's supposed magnetic shield

CAPSTONE's cubesat prepares for Lunar mission

NASA identifies likely locations of the early molten Moon's deep secrets

SOLAR DAILY
A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission

SOLAR DAILY
Did nature or nurture shape the Milky Way's most common planets

New ESO observations show rocky exoplanet has just half the mass of Venus

Small force, big effect: How the planets could influence the sun

Astronomers find evidence of possible life-sustaining planet

SOLAR DAILY
Boeing to remove Starliner from rocket, months-long delay expected

Boeing Starliner launch faces further delays

Hermeus fully-funded to flight with US Air Force Partnership

Netflix plans series on historic SpaceX Inspiration4 mission

SOLAR DAILY
Tianhe astronauts use free time to watch ping-pong and exercise

Shanxi company helps astronauts keep fit in space

China's space propaganda blitz endures at slick new planetarium

How Chinese astronauts stay healthy in space

SOLAR DAILY
Traces of Ceres' icy crust found at Occator Crater

OSIRIS-REx helps scientists model the orbit of hazardous asteroid Bennu

Only slight chance of asteroid Bennu hitting Earth: NASA

Perfect for the Perseid Meteor Shower









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.