![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Zurich, Switzerland (SPX) Nov 26, 2018
The high oscillation frequencies of light waves make them ideally suited to fast data transmission. They can be sent through optical fibres and easily carry hundreds of billions of bits (Gigabits) per second. The "last mile" from a central fibre optic cable to the internet socket at home, however, is the most difficult and expensive. Some alternatives, for instance 4/5G mobile telephony, are cheaper, but they cannot provide all users simultaneously with the extremely high transmission rates required by today's data-hungry applications such as streaming TV. Jurg Leuthold, professor at the Institute for Electromagnetic Fields at ETH Zurich, and his collaborators have now, with support by colleagues at the University of Washington in Seattle, developed a novel light modulator that will make it possible in the future to cover the last mile efficiently and at a low cost with high-frequency microwaves - so called millimetre waves - and hence high data transmission rates.
Light modulator without electronics Leuthold and his colleagues have now succeeded in building a light modulator that works entirely without batteries and electronics. "That makes our modulator completely independent of external power supplies and, on top of that, extremely small so that it can, in principle, be mounted on any lamppost. From there, it can then receive data via microwave signals from individual houses and feed them directly into the central optical fibre", explains Yannick Salamin, a PhD student who made crucial contributions to the development of the new modulator.
Modulation through plasmons The voltage then acts on a thin slot at the centre of the chip - the actual heart of the modulator. There, a narrow slit, just a few micrometres long and less than a hundred nanometres wide, is filled with a material that is particularly sensitive to electric fields. The light beam from the fibre is fed into that slit. Inside the slit, however, the light propagates - differently from the fibre optic cable or air - no longer as an electromagnetic wave, but as a so-called plasmon. Plasmons are hybrid creatures made of electromagnetic fields and oscillations of electric charge at the surface of a metal. Owing to this property, they can be confined much more tightly than light waves. The electrically sensitive ("nonlinear") material inside the slit ensures that even the tiniest electric field created by the antenna will strongly influence the propagation of the plasmons. That influence on the oscillatory phase of the waves is conserved when the plasmons are converted back into light waves at the end of the slit. In this way, the data bits contained in the millimetre waves are transferred directly onto the light waves - without taking a detour through electronics, and without any external power. In a laboratory experiment with microwave signals at 60 Gigahertz, the researchers were able to demonstrate data transmission rates of up to 10 Gigabits per second over a distance of five metres, and 20 Gigabits per second over one metre.
Cheap and versatile In fact, the modulator is already compatible both with the new 5G technology and with future industry standards based on millimetre-wave and terahertz frequencies of 300 Gigahertz and data transmission rates of up to 100 Gigabits per second. Moreover, it can be produced using conventional silicon technology, and thus at a comparatively low cost. Finally, Leuthold can reassure users who might be worried about the electromagnetic radiation involved. Differently from the radio waves or microwaves of a WiFi modem, which propagate evenly in all directions, millimetre waves can be strongly focused for transmission to the outside and only propagate between the roof antenna and a light pole inside a beam that is twenty centimetres in diameter. This strongly reduces the power needed for transmission compared to other wireless technologies. It also eliminates the typical problems of WiFi modems, whose signals can get in each other's way.
Research Report: Microwave plasmonic mixer in a transparent fibre-wireless link
![]() ![]() Facebook's Zuckerberg says he is not considering resigning Washington (AFP) Nov 21, 2018 Embattled Facebook CEO Mark Zuckerberg said Tuesday he has no plans to resign, sounding defiant after a rough year for the social platform. "That's not the plan," Zuckerberg told CNN Business when asked if he would consider stepping down as chairman. He also defended Facebook chief operating officer Sheryl Sandberg, who has drawn criticism over her handling of the social media giant's recent crises. "Sheryl is a really important part of this company and is leading a lot of the efforts for a ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |