Space Travel News  
Mercury's Surface Dominated By Volcanism And Iron-Deficiency

Low-iron volcanic plains filling the Caloris impact basin make a large pale-orange patch (C) in this false-color image of Mercury from MESSENGER. White arrows mark locations of young smooth plains whose composition appears related to the Caloris plains. Around the edge of Caloris and elsewhere lie small volcanic centers thought to form by explosive eruptions (black arrows). The widespread dark blue areas are older rocks that may be rich in the mineral ilmenite. Credit: NASA/JHUAP/Arizona State University
by Staff Writers
Tempe AZ (SPX) Jul 03, 2008
Volcanism has played a more extensive role in shaping the surface of Mercury than scientists had thought. This result comes from multispectral imaging data gathered in January 2008 by MESSENGER, the latest spacecraft to visit the Sun's innermost planet.

MESSENGER data has also identified and mapped surface rock units that correspond to lava flows, volcanos, and other geological features. At the same time, the spacecraft's suite of instruments has confirmed an apparent planet-wide iron deficiency in Mercury's surface rocks.

MESSENGER (short for Mercury Surface, Space Environment, Geochemistry, and Ranging) is the first spacecraft to visit Mercury since NASA's Mariner 10 made three flyby passes in 1974 and 1975. MESSENGER, which is operated for NASA by the Applied Physics Laboratory of Johns Hopkins University in Baltimore, will make two more Mercury flybys (October 6, 2008 and September 29, 2009) before going into orbit around the planet, March 18, 2011.

Mercury and MESSENGER form the subject of 11 papers in a special section devoted to the January flyby in the July 4, 2008, issue of the scientific journal Science.

Mark S. Robinson of Arizona State University is the lead author for a paper in the issue which spotlights data on composition variations in Mercury's surface rocks using their multispectral colors. Robinson, a professor of geology in ASU's School of Earth and Space Exploration, part of the College of Liberal Arts and Sciences, is a co-investigator on the MESSENGER geology science team. Besides Robinson, the multispectral paper has 12 additional co-authors from other institutions.

"We have now imaged half of the part of Mercury that was never seen by Mariner 10," says Robinson. "The picture is still incomplete, but we'll get the other half on October 6th." Back in 1974-75, the orbital trajectory that let Mariner make three passes at Mercury limited it to photographing less than half the planet's surface. This left the rest of Mercury unknown until MESSENGER's arrival in January let scientists begin to fill in the gaps.

Lava plains
MESSENGER's big-picture finding, says Robinson, is the widespread role played by volcanism. While impact craters are common, and at first glance Mercury still resembles the Moon, much of the planet has been resurfaced through volcanic activity.

"For example, according to our color data the Caloris impact basin is completely filled with smooth plains material that appears volcanic in origin," Robinson explains. "In shape and form these deposits are very similar to the mare basalt flows on the Moon. But unlike the Moon, Mercury's smooth plains are low in iron, and thus represent a relatively unusual rock type."

The Caloris plains, he adds, cover at least a million square kilometers (390,000 square miles), or big enough to engulf Arizona, Nevada, and California put together. The plains' size implies the existence of large sources of magma in Mercury's upper mantle.

Multispectral imaging also shows that besides lava flows, Caloris has "red spots," which also appear volcanic. "Red spots have diffuse boundaries and sometimes lie centered on rimless depressions," Robinson says. "Right now they look to be caused by explosive, pyroclastic eruptions."

In addition, Robinson notes, three major rock units stand out in MESSENGER's multispectral imaging.

"We mapped the new hemisphere using moderate resolution images of 5 kilometers [3 miles] per pixel," he says. "As on the Mariner hemisphere, we saw three major units defined by their colors. These units are relatively high-reflectance smooth plains, average cratered terrain, and low-reflectance material."

Where's the iron?
The low-reflectance material is particularly enigmatic, says Robinson. "It's an important and widespread rock that occurs deep in the crust as well as at the surface, yet it has very little ferrous iron in its silicate minerals."

That, he says, makes it unusual. "You expect to find low-reflectance volcanic rocks having a high abundance of iron-bearing silicate minerals, but that's not the case here." One possible solution, he says, is that iron is actually present but invisible to MESSENGER's spectrometers because it's hidden within the chemical structure of minerals such as ilmenite.

Solving the paradox should help scientists unravel Mercury's history. "If you want to understand how a planet has evolved," Robinson explains, "you need to know about the minerals in its crust and mantle. Unfortunately, we are not going to be able to drill into Mercury for a long time to come. All we can do is study its volcanic rocks in detail. They give a glimpse into the planet's mantle."

"Right now," says Robinson, "it looks as if Mercury formed with a deficiency in ferrous iron. But we'll know more about its bulk composition, and thus its history, once MESSENGER gets into orbit in 2011. That's when the surface rocks can be studied much more closely, using the full set of instruments."

Related Links
ASU
Messenger at APL
News Flash at Mercury
Mars News and Information at MarsDaily.com
Lunar Dreams and more



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


The Iron Snows Of Mercury Make For A Heavy Burden
Moffett Field CA (SPX) May 15, 2008
New scientific evidence suggests that deep inside the planet Mercury, iron "snow" forms and falls toward the center of the planet, much like snowflakes form in Earth's atmosphere and fall to the ground.







  • ATK Receives Contract For US Air Force Sounding Rocket Contract
  • SpaceX Conducts Static Test Firing Of Next Falcon 1 Rocket
  • Pratt And Whitney Rocketdyne Contract Option For Solar Thermal Propulsion Rocket Engine
  • NASA, ATK Conduct First Launch Abort System Igniter Test For Orion

  • Inmarsat And ILS Set August 14 For Proton Flight With Inmarsat Satellite
  • Russia Launches Rocket With Military Satellite
  • Payload Integration Complete For Arianespace's Fourth Mission Of 2008
  • Successful Ariane 5 Solid Rocket Booster Test Firing

  • Disaster plan in place for Hubble mission
  • US space shuttle lands safely after installing Japanese lab
  • Space shuttle cleared to land, loose object poses no risk
  • Space shuttle blastoff damaged launch pad: NASA

  • NASA plans two ISS spacewalks next week
  • Shuttle astronauts bid farewell to space station crew
  • Discovery undocks from ISS
  • Shuttle Astronauts Bid Farewell To Space Station Crew

  • Russia seals agreement with private investor for space tourism
  • Analex Awarded Three-Year Option On NASA Expendable Launch Vehicles Integrated Support
  • NASA Goddard Has More Than A Dozen Exciting Missions In Next Year
  • Fly me to the Moon: Japan firm offers weddings in space

  • Shenzhou VII Research Crew Ready To Set Out For Launch Center
  • China's Shot Heard Around The Galaxy
  • A Better Focus On Shenzhou
  • Gallup Poll Shows Americans Unconcerned About China Space Program

  • Eight Teams Taking Up ESA's Lunar Robotics Challenge
  • Three Engineers, Hundreds of Robots, One Warehouse
  • Tartalo The Robot Is Knocking On Your Door
  • Sega, Hasbro unveil new dancing robot

  • Mars Sample Return: The Next Step In Exploring The Red Planet
  • Rain Showers On Mars
  • Phoenix To Bake Ice-Rich Sample Next Week
  • Phoenix Scrapes Almost Perfect Icy Soil For Analysis

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement