Space Travel News  
SOLAR DAILY
Measurement of hot electrons could have solar energy payoff

File image.
by Staff Writers
Houston TX (SPX) May 09, 2011
Basic scientific curiosity paid off in unexpected ways when Rice University researchers investigating the fundamental physics of nanomaterials discovered a new technology that could dramatically improve solar energy panels.

The research is described in a new paper in the journal Science.

"We're merging the optics of nanoscale antennas with the electronics of semiconductors," said lead researcher Naomi Halas, Rice's Stanley C. Moore Professor in Electrical and Computer Engineering.

"There's no practical way to directly detect infrared light with silicon, but we've shown that it is possible if you marry the semiconductor to a nanoantenna. We expect this technique will be used in new scientific instruments for infrared-light detection and for higher-efficiency solar cells."

More than a third of the solar energy on Earth arrives in the form of infrared light. But silicon - the material that's used to convert sunlight into electricity in the vast majority of today's solar panels - cannot capture infrared light's energy. Every semiconductor, including silicon, has a "bandgap" where light below a certain frequency passes directly through the material and is unable to generate an electrical current.

By attaching a metal nanoantenna to the silicon, where the tiny antenna is specially tuned to interact with infrared light, the Rice team showed they could extend the frequency range for electricity generation into the infrared.

When infrared light hits the antenna, it creates a "plasmon," a wave of energy that sloshes through the antenna's ocean of free electrons. The study of plasmons is one of Halas' specialties, and the new paper resulted from basic research into the physics of plasmons that began in her lab years ago.

It has been known that plasmons decay and give up their energy in two ways; they either emit a photon of light or they convert the light energy into heat. The heating process begins when the plasmon transfers its energy to a single electron - a 'hot' electron.

Rice graduate student Mark Knight, lead author on the paper, together with Rice theoretical physicist Peter Nordlander, his graduate student Heidar Sobhani, and Halas set out to design an experiment to directly detect the hot electrons resulting from plasmon decay.

Patterning a metallic nanoantenna directly onto a semiconductor to create a "Schottky barrier," Knight showed that the infrared light striking the antenna would result in a hot electron that could jump the barrier, which creates an electrical current. This works for infrared light at frequencies that would otherwise pass directly through the device.

"The nanoantenna-diodes we created to detect plasmon-generated hot electrons are already pretty good at harvesting infrared light and turning it directly into electricity," Knight said. "We are eager to see whether this expansion of light-harvesting to infrared frequencies will directly result in higher-efficiency solar cells."



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Rice University
All About Solar Energy at SolarDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


SOLAR DAILY
New Surge Protectors for PV Systems
Mechanicsburg PA (SPX) May 06, 2011
Automation Systems Interconnect Inc is pleased to announce the release of their new line of overvoltage and lightning protection modules. For both the AC and DC side of a solar PV network, ASI surge protectors the modules use either MOV or Gas Discharge Tube technology to provide the best possible protection to all components with the solar PV power system. The ASI AC surge protectio ... read more







SOLAR DAILY
Arianespace to launch ABS-2 in 2013

GSAT-8 put through its paces

Ariane Ariane 5 enjoys second successful launch for 2011

Ariane rocket launches two telecoms satellites

SOLAR DAILY
Exploring Rio Tinto Eurobotically

NASA Orbiter Reveals Big Changes in Mars' Atmosphere

Dry ice find hints Mars was a wetter place: study

A Tale Of Two Deserts

SOLAR DAILY
India Eyeing Collaboration With JPL In 2016 NASA Lunar Mission

BRP To Contribute To Canadian Moon And Mars Exploration Programs

Naveen Jain Co-Founder And Chairman Of Moon Express

Project Morpheus To Begin Testing At NASA's Johnson Space Center

SOLAR DAILY
Carbon monoxide detected around Pluto

The PI's Perspective: Pinch Me!

Later, Uranus: New Horizons Passes Another Planetary Milestone

Can WISE Find The Hypothetical Tyche In Distant Oort Cloud

SOLAR DAILY
An Earth as Dense as Lead

Astronomers unveil portrait of 'super-exotic super-Earth'

Tuning Into ExoPlanet Radio

The Shocking Environment Of Hot Jupiters

SOLAR DAILY
UMaine Students Test Wireless Sensors on Rocket

Next-generation US space racers outline plans

Russia To Develop New Space Rocket By 2015

Russia may launch light Soyuz carrier rocket by 2012

SOLAR DAILY
Top Chinese scientists honored with naming of minor planets

China sees smooth preparation for launch of unmanned module

China to attempt first space rendezvous

Countdown begins for Chineses space station program

SOLAR DAILY
Large asteroid to pass close by Earth

Dawn Reaches Milestone Approaching Asteroid Vesta

NASA's Dawn probe closes in on giant asteroid

Spacecraft Earth to Perform Asteroid 'Flyby' This Fall


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement