Space Travel News  
FARM NEWS
Measure of age in soil nitrogen could help precision agriculture
by Staff Writers
Champaign IL (SPX) Jul 28, 2016


Illinois professor Praveen Kumar and graduate student Dong K. Woo developed a model to tell the age of inorganic nitrogen in soil, which could help farmers more precisely apply fertilizer to croplands. Image courtesy L. Brian Stauffer. For a larger version of this image please go here.

What's good for crops is not always good for the environment. Nitrogen, a key nutrient for plants, can cause problems when it leaches into water supplies. University of Illinois engineers developed a model to calculate the age of nitrogen in corn and soybean fields, which could lead to improved fertilizer application techniques to promote crop growth while reducing leaching.

Civil and environmental engineering professor Praveen Kumar and graduate student Dong Kook Woo published their work in the journal Water Resources Research.

"By understanding how long nitrogen stays in the soil and the factors that drive that, we can improve the precision at which we apply nitrogen for agriculture productivity," said Kumar, also a professor of atmospheric sciences.

"We may be able to apply fertilizer specifically in areas that are deficient in nitrogen, in precisely the amount that the plants need to uptake, rather than just applying it uniformly. Potentially, we could see a significant reduction in fertilizer amounts."

Plants take up nitrogen from the soil through their roots as a nutrient. Nitrogen is added to the soil through fertilizer application or by microbes in the soil breaking down organic compounds. However, when there is more nitrogen in the soil than the plants need, it leaches out into the water and can accumulate in lakes, rivers and oceans.

"Nitrogen, usually in the form of nitrate fertilizer, is needed for healthy crop production, but too much is not a good thing since the excess can contaminate water supplies," said Richard Yuretich, program director in the National Science Foundation's Division of Earth Sciences, which funded the research. "Knowing how long nitrate resides in the soil will lead to more efficient agriculture that maximizes plant health without overdosing the environment."

Kumar and Woo developed a numerical model to calculate how long inorganic nitrogen has been in the soil, using a corn-corn-soybean rotation common in the Midwest. Fresh fertilizer application or microbial production of nitrates and ammonium are considered "birth," or age zero.

The researchers then computed age by the chemical reactions or transformations nitrogen goes through in the soil, mediated by moisture, temperature and microbes.

The model revealed two surprising findings when comparing the average age of nitrogen in the topsoil with that in deeper layers, and in comparing corn fields with soybean fields.

"The biggest surprise to me was that we found a lower average age of nitrogen in soybean fields," Woo said. "We use fertilizer on corn, not soybeans. Yet even though we count that fresh fertilizer as age zero, we found a lower average age of nitrogen in soybean fields. We found that is mainly because soybeans uptake the old nitrogen, so the average age is reduced."

When looking at the layers of soil, the researchers initially expected that nitrogen would follow a similar age path to water: newer on top, and growing older as it migrates down through the soil. However, they found that the nitrogen topsoil had a relatively high average age when compared with the water. Looking closer, they realized that one of the forms of nitrogen, ammonium, accumulated in the topsoil.

"Ammonium has a positive charge, which adheres to the soil particles and prevents it from leaching to the deeper layers," Woo said. "Because of that, we observe relatively higher nitrogen age in the upper layers, compared with the age of the nitrate that dissolves in water, which doesn't have that barrier and can migrate down through the soil."

The researchers have established a field site to validate their model by analyzing the isotopic composition of nitrogen, oxygen and water in the runoff. They hope that their work can help farmers more efficiently use resources while also reducing contamination of water sources and marine habitats.

"The idea of using age for chemical analysis is not new, but no one has studied nitrogen age in the context of an agricultural setting," Kumar said.

"By doing that, we are able to reveal patterns of stagnation in the soil, which is different than just using the concentration of nitrogen. The main idea is that there is a better way to apply fertilizer over a landscape than we do presently. We should be looking into more precise approaches."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Illinois at Urbana-Champaign
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
FARM NEWS
Grain drain, Laos' sand mining damaging the Mekong
Vientiane (AFP) July 27, 2016
Grain by grain, truckload by truckload, Laos' section of the Mekong river is being dredged of sand to make cement - a commodity being devoured by a Chinese-led building boom in the capital. But the hollowing out of the riverbed is also damaging a vital waterway that feeds hundreds of thousands of fishermen and farmers in the poverty-stricken nation. "Today, it's more complicated for us ... read more


FARM NEWS
Commission approves acquisition of Arianespace by ASL, subject to conditions

SpaceX cargo ship arrives at space station

Ukraine, US aim to launch jointly-developed space rocket

SpaceX propels cargo to space station, lands rocket

FARM NEWS
NASA's Viking Data Lives on, Inspires 40 Years Later

Opportunity Rover wrapping up work within Marathon Valley

NASA Mars Rover Can Choose Laser Targets on Its Own

NASA Selects Five Mars Orbiter Concept Studies

FARM NEWS
Asteroid that formed moon's Imbrium Basin may have been protoplanet-sized

Russian and US engineers plan manned moon mission

SSTL and Goonhilly announce partnership and a call for lunar orbit payloads

Taiwan to make lunar lander for NASA moon-mining mission

FARM NEWS
New Distant Dwarf Planet Beyond Neptune

Researchers discover distant dwarf planet beyond Neptune

New Horizons Receives Mission Extension to the Kuiper Belt

Alex Parker Discovers Moon Over Makemake in the Kuiper Belt

FARM NEWS
First atmospheric study of Earth-sized exoplanets reveals rocky worlds

Atmospheric chemistry on paper

Surface Composition Determines Planet's Temperature and Habitability

Gemini Observatory Instrumental in Latest Exoplanet Harvest

FARM NEWS
NASA completes first shell buckling tests with a bang

Reaction Engines secures funding to enable development of SABRE demonstrator engine

A Peek Inside SLS: Fuel Tank For World's Largest Rocket Nears Completion

China announces success in technology to refuel satellites in orbit

FARM NEWS
China commissions space tracking ship as new station readied

China's second space lab Tiangong-2 reaches launch center

Dutch Radio Antenna to Depart for Moon on Chinese Mission

Chinese Space Garbageman is not a Weapon

FARM NEWS
Dawn Maps Ceres Craters Where Ice Can Accumulate

Rosetta Finale Set for 30 September

Elite Team to Consider New Approaches to Asteroid Danger

Chaotic Orbit of Comet Halley Explained









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.