Subscribe free to our newsletters via your
. Space Travel News .




FLORA AND FAUNA
Marine pest provides advances in maritime anti-fouling and biomedicine
by Staff Writers
Clemson SC (SPX) Aug 01, 2014


PhD. candidate Beth Falwell prepares a sample.

A team of biologists, led by Clemson University associate professor Andrew S. Mount, performed cutting-edge research on a marine pest that will pave the way for novel anti-fouling paint for ships and boats and also improve bio-adhesives for medical and industrial applications.

The team's findings, published in Nature Communications, examined the last larval stage of barnacles that attaches to a wide variety of surfaces using highly versatile, natural, possibly polymeric material that acts as an underwater heavy-duty adhesive.

"In previous research, we were trying to understand how barnacle adhesives were interacting with surfaces of different chemistries," said Mount, an author on the journal article and founder and director of the Okeanos Research Laboratory in Clemson's department of biological sciences.

"Most biofouling researchers assume that cyprid larval adhesive plaques are primarily composed of proteins and peptides, but we discovered that lipids are also present, which means that the composition of the permanent adhesive is far more complicated that previously realized."

The torpedo-shaped cyprid larvae is the last larval stage before the animal undergoes metamorphosis to become the familiar barnacle seen on pilings and jetties along the coast.

Once the cyprid has found a potentially suitable spot, it cements itself permanently in place and then undergoes metamorphosis to become an adult calcareous barnacle.

In order to survive and reproduce, benthic - or bottom-dwelling - marine invertebrates like barnacles need to attach themselves in close proximity to each other.

These organisms have evolved an array of adhesion mechanisms that allow them to attach virtually anywhere, including nuclear submarines, maritime ships and offshore drilling rigs, and even to animals like turtles and whales.

"The ability of barnacles to adhere to surfaces that have very different physical and chemical properties is unique and provides insight into the unique physic-chemical properties of their larval adhesive," Mount said.

With funding from the Office of Naval Research, the researchers built a two-photon microscopy system and, in collaboration with Marcus Cicerone at the National Institute of Standards and Technology, employed his innovative technique known as Broadband Coherent Anti-Stokes Raman Scattering to delineate the two different phases of the barnacle cyprid adhesive plaque.

"Using these techniques, we found that the permanent adhesive is made up of two phases: a lipid phase and a protein phase," said Mount.

"The lipid phase is released first. We believe that this lipid phase protects the protein phase from excess hydration and the damaging effects of seawater, and it may limit the protein phase from spreading too thin and losing its ability to securely adhere the larvae to a surface."

This is the first finding of functional roles of lipids in marine bioadhesives.

"The application of both two-photon microscopy and broadband coherent anti-Stokes Raman scattering clearly demonstrated the role of lipids, which we traced back to the cement glands and showed that they are produced and contained in a separate subsets of cells," he said.

The researchers' renewed understanding of barnacle cyprid adhesives will advance anti-fouling coatings for the maritime industry in the years to come and help develop a new class of bio-adhesives for medical and industrial applications.

.


Related Links
Clemson University
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
Chinese mosquitos on the Baltic Sea
Bonn, Germany (SPX) Aug 01, 2014
The analysis of the roughly 3,000 pieces is still in its infant stage. But it is already evident that the results will be of major significance. "Amazingly often, we are finding-in addition to Asian forms-the same insect species in Fushun amber that we found in Baltic amber," explained Bonn paleontologist Professor Dr. Jes Rust. The Baltic amber comes from the Baltic Sea region, which is a ... read more


FLORA AND FAUNA
US Launches Two Surveillance Satellites From Cape Canaveral

United Launch Alliance Marks 85th Successful Launch

US aerospace firm outlines New Zealand-based space program

China to launch satellite for Venezuela

FLORA AND FAUNA
Los Alamos Laser Selected for 2020 Mars Mission

NASA Announces Mars 2020 Rover Payload to Explore the Red Planet as Never Before

Mars 2020 rover will carry tools to make oxygen

NASA Long-Lived Mars Opportunity Rover Passes 25 Miles of Driving

FLORA AND FAUNA
Tidal forces gave moon its shape

Riddle of bulging Moon solved at last

China's biggest moon challenge: returning to earth

Lunar Pits Could Shelter Astronauts, Reveal Details of How 'Man in the Moon' Formed

FLORA AND FAUNA
Putting It All Together

Annual Checkout Makes for Great Pluto Preparation

In exactly one year, NASA's New Horizons probe will reach Pluto

What If Voyager Had Explored Pluto?

FLORA AND FAUNA
Young binary star system may form planets with weird and wild orbits

Hubble Finds Three Surprisingly Dry Exoplanets

Astronomers come up dry in search for water on exoplanets

Hubble Finds Three Surprisingly Dry Exoplanets

FLORA AND FAUNA
Federal auditors say NASA doesn't have funds for big rocket

World's Largest Spacecraft Welding Tool Will Build Core Stage of NASA's Space Launch System

Sierra Nevada Contacts All Six On-Orbit ORBCOMM Generation 2 Satellites

Aerojet Rocketdyne Tests 1 Newton Thruster for Green Propellant Infusion Mission

FLORA AND FAUNA
China's Circumlunar Spacecraft Unmasked

China to launch HD observation satellite this year

Lunar rock collisions behind Yutu damage

China's Fast Track To Circumlunar Mission

FLORA AND FAUNA
New NASA Research Shows Giant Asteroids Battered Early Earth

Surface impressions of Rosetta's comet

NEOWISE Spots a Comet That Looked Like an Asteroid

NASA's Mars orbiters to witness comet flyby




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.