Space Travel News  
INTERNET SPACE
Making waves for ultrahigh definition displays
by Staff Writers
Thuwal, Saudi Arabia (SPX) Jan 17, 2018


Wavy transistor arrays represent a step toward developing a single gadget with shape and size that can be dynamically reconfigured.

Flexible ultrahigh resolution displays have benefits for next-generation mobile electronics, such as point-of-care medical diagnostic devices. KAUST has developed a unique transistor architecture that boosts the performance of the display circuitry.

Flat-panel displays implemented in smart watches, mobile devices and televisions rely on planar transistor circuits to achieve high-resolution and fast imaging. In these circuits, thin-film transistors, acting as switches, control the electric current that activates individual image elements, or pixels, consisting of light-emitting diodes (LEDs) or liquid crystals.

Future displays are expected to offer an even better visual experience through increases in resolution and frame rate. While transistor miniaturization can augment resolution, a higher field-effect mobility of the channel material can fulfill both these needs. It does this through its ability to facilitate electron and hole flows between contacts under applied voltage, which then allows transistors to switch faster and occupy a smaller pixel area.

To date, amorphous-oxide semiconductors, such as zinc oxide and indium-gallium zinc oxide, have provided transistor channels with modest mobility. Scaling down these transistors is expensive and introduces flaws known as short-channel effects that increase their power consumption and degrade their performance, explains Muhammad Hussain, who led the research team.

As an alternative, Hussain's team has designed non-planar vertical semiconductor fin-like structures that are laterally interconnected to form wavy transistor arrays. The researchers opted for zinc oxide as the active channel material and generated the wavy architecture on a silicon substrate before transferring it onto a flexible soft polymer support using a low temperature process.

Thanks to the vertical orientation, the researchers widened the transistors by 70% without expanding their occupied pixel area, doubling the transistor performance. The wavy arrays exhibited reduced short-channel effects and higher turn-on voltage stability compared to their planar equivalents. Moreover, in a proof-of-concept experiment, they could drive flexible LEDs at twice the output power as their conventional counterparts.

"The LEDs were brighter without increasing power consumption," says Hussain.

According to Hussain, considering the transition from desktop to smart phone reveals an obvious trend: reduction in size and weight leads to better displays. Yet, most people juggle laptops, tablets and smart phones.

"Having a single gadget with shape and size that can be dynamically reconfigured is a dream we are working toward," he says. He notes that wavy transistor arrays represent a step in that direction.

Hanna, A.N., Kutbee, A.T., Subedi, R.C., Ooi, B. and Hussain, M.M. Wavy architecture thin-film transistor for ultra-high resolution flexible displays. Small advance online publication, 13 November 2017.

INTERNET SPACE
Le smartphone? France has another term in mind
Paris (AFP) Jan 15, 2018
Smartphones may have become ubiquitous in France, but the country's language mavens hope there's still time to keep the word from becoming ensconced in everyday speech. The Enrichment Commission for the French Language has come up with what it considers a more suitable expression: "le mobile multifonction", or the multifunction cellphone. It doesnt' exactly trip off the tongue, but it fi ... read more

Related Links
King Abdullah University of Science and Technology
Satellite-based Internet technologies


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

INTERNET SPACE
INTERNET SPACE
Deep, buried glaciers spotted on Mars

Steep Slopes on Mars Reveal Structure of Buried Ice

Scientist's work may provide answer to Martian mountain mystery

Opportunity takes right at the fork and has successful battery test

INTERNET SPACE
Possible Lava Tube Skylights Discovered Near the North Pole of the Moon

Russian company declassifies 1973 report on Lunokhod-2 lunar rover

Funding runs dry for Indian Google X Prize lunar team

Astronauts: Trump's proposed Lunar mission will take time

INTERNET SPACE
JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule

New Horizons Corrects Its Course in the Kuiper Belt

INTERNET SPACE
Hubble finds substellar objects in the Orion Nebula

NASA study shows disk patterns can self-generate

Ingredients for life revealed in meteorites that fell to Earth

Citizen scientists discover five-planet system

INTERNET SPACE
Update from Mojave: VSS Unity successfully completes high speed glide flight

India launches country's 100th satellite and 30 microsats

Aerojet Rocketdyne Supports ULA Launch in Support of National Security

Blue Origin tests rocket engine as US seeks to replace Russian RD-180

INTERNET SPACE
Scientist reveals what is so special about Chines's next moon mission

China's Kuaizhou-11 rocket scheduled to launch in first half of 2018

Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

INTERNET SPACE
Study identifies processes of rock formed by meteors or nuclear blasts

NASA's newly renamed Swift mission spies a comet slowdown

NASA image showcases Ceres mountain named for Kwanzaa

Development on muon beam analysis of organic matter in samples from space









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.