Subscribe free to our newsletters via your
. Space Travel News .




FLORA AND FAUNA
Making teeth tough: Beavers show way to improve our enamel
by Staff Writers
Chicago IL (SPX) Feb 15, 2015


Northwestern University researchers found that the pigmented enamel of beavers, which contains iron, is both harder and more resistant to acid than regular enamel, including that treated with fluoride. Image courtesy Michael Graydon. For a larger version of this image please go here.

Beavers don't brush their teeth, and they don't drink fluoridated water, but a new Northwestern University study reports beavers do have protection against tooth decay built into the chemical structure of their teeth: iron.

This pigmented enamel, the researchers found, is both harder and more resistant to acid than regular enamel, including that treated with fluoride. This discovery is among others that could lead to a better understanding of human tooth decay, earlier detection of the disease and improving on current fluoride treatments.

Layers of well-ordered hydroxylapatite "nanowires" are the core structure of enamel, but Derk Joester and his team discovered it is the material surrounding the nanowires, where small amounts of amorphous minerals rich in iron and magnesium are located, that controls enamel's acid resistance and mechanical properties.

Enamel is a very complex structure, making study of it challenging. Joester's team is the first to show unambiguously that this "amorphous," or unstructured, phase exists in enamel, and they are the first to show its exact composition and structure.

"We have made a really big step forward in understanding the composition and structure of enamel -- the tooth's protective outer layer -- at the smallest length scales," said Joester, lead author of the study and an associate professor of materials science and engineering in the McCormick School of Engineering and Applied Science.

"The unstructured material, which makes up only a small fraction of enamel, likely plays a role in tooth decay," Joester said. "We found it is the minority ions -- the ones that provide diversity -- that really make the difference in protection. In regular enamel, it's magnesium, and in the pigmented enamel of beaver and other rodents, it's iron."

The unprecedented imaging study of tooth enamel at the nanoscale will be published Feb. 13 by the journal Science.

Dental caries -- better known as tooth decay -- is the breakdown of teeth due to bacteria. ("Caries" is Latin for "rottenness.") It is one of the most common chronic diseases and a major public health problem, despite strides made with fluoride treatments.

According to the American Dental Association, $111 billion a year is spent on dental services in the U.S., a significant part of that on cavities and other tooth decay issues. A staggering 60 to 90 percent of children and nearly 100 percent of adults worldwide have or have had cavities, according to the World Health Organization.

In a series of experiments of rabbit, mouse, rat and beaver enamel, Joester and his colleagues imaged the never-seen-before amorphous structure that surrounds the nanowires. They used powerful atom-probe tomography and other techniques to map enamel's structure atom by atom. (Rodent enamel is similar to human enamel.)

The researchers subjected the teeth to acid and took images before and after acid exposure. They found the periphery of the nanowires dissolved (the amorphous material), not the nanowires themselves.

The researchers next identified amorphous biominerals in the structure, such as iron and magnesium, and learned how they contribute to both the mechanical hardness and resistance of enamel to acid dissolution.

Of particular interest to Joester and his colleagues was the pigmented enamel of the beaver's incisors. Their studies showed it to be an improvement over fluoride-treated enamel in resisting acid. (The presence of iron gives the teeth a reddish-brown color.)

"A beaver's teeth are chemically different from our teeth, not structurally different," Joester said. "Biology has shown us a way to improve on our enamel. The strategy of what we call 'grain boundary engineering' -- focusing on the area surrounding the nanowires -- lights the way in which we could improve our current treatment with fluoride."

The title of the Science paper is "Amorphous Intergranular Phases Control the Properties of Rodent Tooth Enamel."

A related paper will be published this week by the journal Frontiers in Physiology.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Northwestern University
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
Make like a squid and transform
Tel Aviv, Israel (SPX) Feb 15, 2015
The principle of adaptation - the gradual modification of a species' structures and features - is one of the pillars of evolution. While there exists ample evidence to support the slow, ongoing process that alters the genetic makeup of a species, scientists could only suspect that there were also organisms capable of transforming themselves ad hoc to adjust to changing conditions. Now a ... read more


FLORA AND FAUNA
Soyuz Installed at Baikonur, Expected to Launch Wednesday

SpaceX cargo craft returns to Earth

High seas force SpaceX to ditch bid to recycle rocket

SpaceX to try rocket recycle launch on Tuesday

FLORA AND FAUNA
Mars Rover Nearing Marathon Achievement

NASA's Curiosity Analyzing Sample of Martian Mountain

NASA Spacecraft Completes 40,000 Mars Orbits

Mars Orbiter Spies Curiosity Rover at Work

FLORA AND FAUNA
NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

LRO finds lunar hydrogen more abundant on Moon's pole-facing slopes

Service Module of Chinese Probe Enters Lunar Orbit

FLORA AND FAUNA
New Horizons snaps new images of Pluto en route to historic flyby

Something Special in the Air

NASA craft set to beam home close-ups of Pluto

New Horizons ready for planet's beyond beyond

FLORA AND FAUNA
Scientists predict earth-like planets around most stars

"Vulcan Planets" - Inside-Out Formation of Super-Earths

Dawn ahead!

Habitable Evaporated Cores

FLORA AND FAUNA
Eruptions Evicted: Anti-geyser Testing Completed for SLS Liquid Oxygen Tank

Europe tests space plane in step to strategic goal

Can jet planes launch small satellites into orbit on the cheap?

What's new about Europe's reentry mission?

FLORA AND FAUNA
More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

FLORA AND FAUNA
Why Comets Are Like Deep Fried Ice Cream

Rosetta photos: Comet's material becoming more volatile as it nears sun

Number of Known Accessible Near-Earth Asteroids Doubles Since 2010

Dawn Gets Closer Views of Ceres




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.