Subscribe free to our newsletters via your
. Space Travel News .




ROCKET SCIENCE
MIT team proposes storing extra rocket fuel in space for future missions
by Jennifer Chu for MIT News
Boston MA (SPX) Mar 10, 2014


Illustration courtesy Christine Daniloff and MIT.

Future lunar missions may be fueled by gas stations in space, according to MIT engineers: A spacecraft might dock at a propellant depot, somewhere between the Earth and the moon, and pick up extra rocket fuel before making its way to the lunar surface.

Orbiting way stations could reduce the fuel a spacecraft needs to carry from Earth - and with less fuel onboard, a rocket could launch heavier payloads, such as large scientific experiments.

Over the last few decades, scientists have proposed various designs, such as building a fuel-manufacturing station on the moon and sending tankers to refill floating depots. But most ideas have come with hefty price tags, requiring long-term investment.

The MIT team has come up with two cost-efficient depot designs that do not require such long-term commitment. Both designs take advantage of the fact that each lunar mission carries a supply of "contingency propellant" - fuel that's meant to be used only in emergencies. In most cases, this backup fuel goes unused, and is either left on the moon or burned up as the crew re-enters the Earth's atmosphere.

Instead, the MIT team proposes using contingency propellant from past missions to fuel future spacecraft. For instance, as a mission heads back to Earth, it may drop a tank of contingency propellant at a depot before heading home.

The next mission can pick up the fuel tank on its way to the moon as its own emergency supply. If it ends up not needing the extra propellant, it can also drop it at the depot for the next mission - an arrangement that the team refers to as a "steady-state" approach.

A depot may also accumulate contingency propellant from multiple missions, part of an approach the researchers call "stockpiling." Spacecraft heading to the moon would carry contingency propellant as they normally would, dropping the tank at a depot on the way back to Earth if it's not needed; over time, the depot builds up a large fuel supply.

This way, if a large lunar mission launches in the future, its rocket wouldn't need a huge fuel supply to launch the heavier payload. Instead, it can stop at the depot to collect the stockpiled propellant to fuel its landing on the moon.

"Whatever rockets you use, you'd like to take full advantage of your lifting capacity," says Jeffrey Hoffman, a professor of the practice in MIT's Department of Aeronautics and Astronautics. "Most of what we launch from the Earth is propellant. So whatever you can save, there's that much more payload you can take with you."

Hoffman and his students - Koki Ho, Katherine Gerhard, Austin Nicholas, and Alexander Buck - outline their depot architecture in the journal Acta Astronautica.

Pickup and drop-off in space
The researchers came up with a basic mission strategy to return humans to the moon, one slightly different from that of the Apollo missions. During the Apollo era, spacecraft circled close to the lunar equator - a route that required little change in direction, and little fuel to stay on track.

In the future, lunar missions may take a more flexible approach, with the freedom to change course to explore farther reaches of the moon - such as the polar caps, for evidence of water - a strategy that would require each spacecraft to carry extra fuel to change orbits.

Working under the assumption of a more global exploration strategy, the researchers designed a basic architecture involving a series of stand-alone missions, each exploring the surface of the moon for seven to 14 days.

This mission plan requires that a spacecraft returning to Earth must change its orbital plane when needed. Under this basic scenario, missions could operate under existing infrastructure, without fuel depots, meaning that each spacecraft would carry its own supply of contingency propellant.

The researchers then drew up two depot designs to improve the efficiency of the basic scenario. In both designs, depots would be stationed at Lagrange points - regions in space between the Earth, moon, and sun that maintain gravitational equilibrium. Objects at these points remain in place, keeping the same relative position with respect to the Earth and the moon.

Hoffman says that ideally, transferring fuel between the depot and a spacecraft would simply involve astronauts or a robotic arm picking up a tank. The alternative - siphoning fuel from tank to tank like you would for your car - is a bit trickier, as liquid tends to float in a gravity-free environment. But, Hoffman says, it's doable.

"In building the International Space Station, every time a new module is added, we've had to hook up new fluid connections," Hoffman says. "It's not a trivial design problem, but it can be done."

'Creating value ... against political uncertainty'
The main drawbacks for both depot designs include maintenance; keeping depots within the Lagrange point; and preventing a phenomenon, called "boil-off," in which fuel that's not kept at cold-enough temperatures can boil away. If scientists can find ways around these challenges, Hoffman says, gas stations in space could be an efficient way to support large lunar explorations.

"One of the problems with large space programs is, you invest a huge amount in building up the infrastructure, and then a program gets canceled," Hoffman says. "With depot architectures, you're creating value which is robust against political uncertainty."

The paper came out of two MIT classes taught by Hoffman: 16.851 (Satellite Engineering) and 16.89 (Space Systems Engineering), in which students also looked at redesigning a lunar lander and evaluated different approaches to landing on the moon.

.


Related Links
Massachusetts Institute of Technology
Rocket Science News at Space-Travel.Com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ROCKET SCIENCE
NASA Tests New Robotic Refueling Technologies
Greenbelt MD (SPX) Mar 09, 2014
NASA has successfully concluded a remotely controlled test of new technologies that would empower future space robots to transfer hazardous oxidizer - a type of propellant - into the tanks of satellites in space today. Concurrently on the ground, NASA is incorporating results from this test and the Robotic Refueling Mission on the International Space Station to prepare for an upcoming grou ... read more


ROCKET SCIENCE
Payload prep continues for Arianespace Soyuz for Sentinel-1A

Russia to Start Building New Manned Rocket Launch Pad in 2015

New Vostochny space center a key priority for Russian Far East

'Mission of Firsts' Showcased New Range-Safety Technology at NASA Wallops

ROCKET SCIENCE
Opportunity Mars Rover Exploring Murray Ridge Area

Mars Rover Oppportunity Crushing Rocks With Wheels

Relay Radio on Mars-Bound NASA Craft Passes Checkout

Robotic Arm Crushes Rock for Study

ROCKET SCIENCE
Russia to launch three lunar rovers from 2016 to 2019

Control circuit malfunction troubles China's Yutu

China's Lunar Lander Still Operational

China Focus: Uneasy rest begins for China's troubled Yutu rover

ROCKET SCIENCE
New Horizons Reaches the Final 4 AU

Thanks America, New Horizons Ahead

Countdown to Pluto

A Busy Year Begins for New Horizons

ROCKET SCIENCE
'Dimer molecules' aid study of exoplanet pressure, hunt for life

A small step toward discovering habitable earths

What Would A Rocky Exoplanet Look Like? Atmosphere Models Seek Clues

Super-Earth' may be dead worlds

ROCKET SCIENCE
NASA Tests New Robotic Refueling Technologies

Sierra Nevada Completes Dream Chaser Flight Profile Data Milestone

Japan Calls For New Launcher Proposals

US considers launching production of Russian rocket engines

ROCKET SCIENCE
China to launch first "space shuttle bus" this year

China expects to launch cargo ship into space around 2016

China capable of exploring Mars

Feature: The "masters" behind China's lunar rover Jade Rabbit

ROCKET SCIENCE
Asteroid to make close pass by Earth

Astronomers spot rare asteroid break-up

Silently and patiently streaking through the main asteroid belt

NEOWISE Spies Its First Comet




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.