Space Travel News
TIME AND SPACE
MIT physicists improve the precision of atomic clocks
illustration only
MIT physicists improve the precision of atomic clocks
by Jennifer Chu | MIT News
Boston MA (SPX) Oct 10, 2025

Every time you check the time on your phone, make an online transaction, or use a navigation app, you are depending on the precision of atomic clocks.

An atomic clock keeps time by relying on the "ticks" of atoms as they naturally oscillate at rock-steady frequencies. Today's atomic clocks operate by tracking cesium atoms, which tick over 10 billion times per second. Each of those ticks is precisely tracked using lasers that oscillate in sync, at microwave frequencies.

Scientists are developing next-generation atomic clocks that rely on even faster-ticking atoms such as ytterbium, which can be tracked with lasers at higher, optical frequencies. If they can be kept stable, optical atomic clocks could track even finer intervals of time, up to 100 trillion times per second.

Now, MIT physicists have found a way to improve the stability of optical atomic clocks, by reducing "quantum noise" - a fundamental measurement limitation due to the effects of quantum mechanics, which obscures the atoms' pure oscillations. In addition, the team discovered that an effect of a clock's laser on the atoms, previously considered irrelevant, can be used to further stabilize the laser.

The researchers developed a method to harness a laser-induced "global phase" in ytterbium atoms, and have boosted this effect with a quantum-amplification technique. The new approach doubles the precision of an optical atomic clock, enabling it to discern twice as many ticks per second compared to the same setup without the new method. What's more, they anticipate that the precision of the method should increase steadily with the number of atoms in an atomic clock.

The researchers detail the method, which they call global phase spectroscopy, in a study appearing in the journal Nature. They envision that the clock-stabilizing technique could one day enable portable optical atomic clocks that can be transported to various locations to measure all manner of phenomena.

"With these clocks, people are trying to detect dark matter and dark energy, and test whether there really are just four fundamental forces, and even to see if these clocks can predict earthquakes," says study author Vladan Vuletic, the Lester Wolfe Professor of Physics at MIT. "We think our method can help make these clocks transportable and deployable to where they're needed."

The paper's co-authors are Leon Zaporski, Qi Liu, Gustavo Velez, Matthew Radzihovsky, Zeyang Li, Simone Colombo, and Edwin Pedrozo-Penafiel, who are members of the MIT-Harvard Center for Ultracold Atoms and the MIT Research Laboratory of Electronics.

Ticking time

In 2020, Vuletic and his colleagues demonstrated that an atomic clock could be made more precise by quantumly entangling the clock's atoms. Quantum entanglement is a phenomenon by which particles can be made to behave in a collective, highly correlated manner. When atoms are quantumly entangled, they redistribute any noise, or uncertainty in measuring the atoms' oscillations, in a way that reveals a clearer, more measurable "tick."

In their previous work, the team induced quantum entanglement among several hundred ytterbium atoms that they first cooled and trapped in a cavity formed by two curved mirrors. They sent a laser into the cavity, which bounced thousands of times between the mirrors, interacting with the atoms and causing the ensemble to entangle. They were able to show that quantum entanglement could improve the precision of existing atomic clocks by essentially reducing the noise, or uncertainty between the laser's and atoms' tick rates.

At the time, however, they were limited by the ticking instability of the clock's laser. In 2022, the same team derived a way to further amplify the difference in laser versus atom tick rates with "time reversal" - a trick that relies on entangling and de-entangling the atoms to boost the signal acquired in between.

However, in that work the team was still using traditional microwaves, which oscillate at much lower frequencies than the optical frequency standards ytterbium atoms can provide. It was as if they had painstakingly lifted a film of dust off a painting, only to then photograph it with a low-resolution camera.

"When you have atoms that tick 100 trillion times per second, that's 10,000 times faster than the frequency of microwaves," Vuletic says. "We didn't know at the time how to apply these methods to higher-frequency optical clocks that are much harder to keep stable."

About phase

In their new study, the team has found a way to apply their previously developed approach of time reversal to optical atomic clocks. They then sent in a laser that oscillates near the optical frequency of the entangled atoms.

"The laser ultimately inherits the ticking of the atoms," says first author Zaporski. "But in order for this inheritance to hold for a long time, the laser has to be quite stable."

The researchers found they were able to improve the stability of an optical atomic clock by taking advantage of a phenomenon that scientists had assumed was inconsequential to the operation. They realized that when light is sent through entangled atoms, the interaction can cause the atoms to jump up in energy, then settle back down into their original energy state and still carry the memory about their round trip.

"One might think we've done nothing," Vuletic says. "You get this global phase of the atoms, which is usually considered irrelevant. But this global phase contains information about the laser frequency."

In other words, they realized that the laser was inducing a measurable change in the atoms, despite bringing them back to the original energy state, and that the magnitude of this change depends on the laser's frequency.

"Ultimately, we are looking for the difference of laser frequency and the atomic transition frequency," explains co-author Liu. "When that difference is small, it gets drowned by quantum noise. Our method amplifies this difference above this quantum noise."

In their experiments, the team applied this new approach and found that through entanglement they were able to double the precision of their optical atomic clock.

"We saw that we can now resolve nearly twice as small a difference in the optical frequency or, the clock ticking frequency, without running into the quantum noise limit," Zaporski says. "Although it's a hard problem in general to run atomic clocks, the technical benefits of our method it will make it easier, and we think this can enable stable, transportable atomic clocks."

Research Report:"Quantum-amplified global-phase spectroscopy on an optical clock transition"

Related Links
Research Laboratory of Electronics
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
Swiss watch industry should find time for India, says Deloitte
Zurich (AFP) Oct 8, 2025
India and Mexico could become new drivers of growth for the Swiss watch industry, which has been clobbered by US tariffs and slumping demand in China, top audit firm Deloitte said Wednesday. The emblematic Swiss industry "is navigating one of the most complex periods in recent memory", the professional services giant said in the 11th Deloitte Swiss Watch Industry Study. Watchmaking, the wealthy Alpine country's third-largest export sector, was rocked when the United States - its largest market ... read more

TIME AND SPACE
TIME AND SPACE
Martian skies reveal intricate atmospheric layers in new orbiter images

Computer models point to crew diversity as key to resilient Mars missions

Two decades of Mars images reveal fast moving dust devils and stronger winds

Mars dust devils point to planet wide gale force winds

TIME AND SPACE
Lunar mega basin signals radioactive ejecta and reshapes Moon origin story

Lunar and Earth Construction Robot Charlotte to Debut in Sydney

QUT to advance navigation systems for Australia lunar rover

With new analysis, Apollo samples brought to Earth in 1972 reveal exotic sulfur hidden in Moon's mantle

TIME AND SPACE
Out-of-this-world ice geysers on Saturn's Enceladus

3 Questions: How a new mission to Uranus could be just around the corner

A New Model of Water in Jupiter's Atmosphere

Evidence of a past, deep ocean on Uranian moon, Ariel

TIME AND SPACE
Space agencies track rare 3I/ATLAS interstellar object near Mars

Young rogue planet displays record-breaking 'growth spurt'

Rare clean room bacterium survives by playing dead UH team finds

Completed Plato spacecraft construction enters final test campaign

TIME AND SPACE
Rocket Lab widens iQPS partnership with three more dedicated Electron launches starting 2026

Ariane 6 set to deploy Copernicus Sentinel 1D on November 4

Raytheon and Anduril achieve breakthrough test in advanced rocket propulsion

Space Force awards launch missions to SpaceX, ULA

TIME AND SPACE
Chinese astronauts complete fourth spacewalk of Shenzhou XX mission

Constellations of Power: Smart Dragon-3 and the Geopolitics of China's Space Strategy

China advances lunar program with Long March 10 ignition test

Chinese astronauts expand science research on orbiting space station

TIME AND SPACE
Asteroid near Earth detected hours after it passed the planet

Gaia data uncovers hidden link between asteroid collisions and chaotic spin states

China's Tianwen 2 probe marks halfway milestone en route to asteroid target

Water once persisted on Ryugu parent asteroid long after formation

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.