Space Travel News  
MIT Reports Finer Lines For Microchips And Solarcells

MIT nanoruler lithography tool with a 300 mm-diameter silicon wafer. Photo / Ralf Heilmann
by David Chandler
Boston MA (SPX) Jul 10, 2008
MIT researchers have achieved a significant advance in nanoscale lithographic technology, used in the manufacture of computer chips and other electronic devices, to make finer patterns of lines over larger areas than have been possible with other methods.

Their new technique could pave the way for next-generation computer memory and integrated-circuit chips, as well as advanced solar cells and other devices.

The team has created lines about 25 nanometers (billionths of a meter) wide separated by 25 nm spaces. For comparison, the most advanced commercially available computer chips today have a minimum feature size of 65 nm. Intel recently announced that it will start manufacturing at the 32 nm minimum line-width scale in 2009, and the industry roadmap calls for 25 nm features in the 2013-2015 time frame.

The MIT technique could also be economically attractive because it works without the chemically amplified resists, immersion lithography techniques and expensive lithography tools that are widely considered essential to work at this scale with optical lithography.

Periodic patterns at the nanoscale, while having many important scientific and commercial applications, are notoriously difficult to produce with low cost and high yield. The new method could make possible the commercialization of many new nanotechnology inventions that have languished in laboratories due to the lack of a viable manufacturing method.

The MIT team includes Mark Schattenburg and Ralf Heilmann of the MIT Kavli Institute of Astrophysics and Space Research and graduate students Chih-Hao Chang and Yong Zhao of the Department of Mechanical Engineering.

Their results have been accepted for publication in the journal Optics Letters and were recently presented at the 52nd International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication in Portland, Ore.

Schattenburg and colleagues used a technique known as interference lithography (IL) to generate the patterns, but they did so using a tool called the nanoruler--built by MIT graduate students--that is designed to perform a particularly high precision variant of IL called scanning-beam interference lithography, or SBIL.

This recently developed technique uses 100 MHz sound waves, controlled by custom high-speed electronics, to diffract and frequency-shift the laser light, resulting in rapid patterning of large areas with unprecedented control over feature geometry.

While IL has been around for a long time, the SBIL technique has enabled, for the first time, the precise and repeatable pattern registration and overlay over large areas, thanks to a new high-precision phase detection algorithm developed by Zhao and a novel image reversal process developed by Chang.

According to Schattenburg, "What we're finding is that control of the lithographic imaging process is no longer the limiting step. Material issues such as line sidewall roughness are now a major barrier to still-finer length scales. However, there are several new technologies on the horizon that have the potential for alleviating these problems. These results demonstrate that there's still a lot of room left for scale shrinkage in optical lithography. We don't see any insurmountable roadblocks just yet."

The MIT team performed the research in the Space Nanotechnology Laboratory of the MIT Kavli Institute of Astrophysics and Space Research, with financial support from NASA and NSF.

Related Links
All About Solar Energy at SolarDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Californian Solar Pioneer And His Green Business Berkeley-Style
San Francisco CA (SPX) Jul 10, 2008
While sales of solar installations boom in California and the U.S., it wasn't so easy selling a solar hot-water system back in 1976. Gary Gerber, founder of Sun Light and Power in Berkeley, CA had to explain to skeptical potential customers that, yes, indeed, the heat from the sun could heat water.







  • NASA Plans To Test Space Shuttle Replacement In Spring 2009
  • ATK Receives Contract For US Air Force Sounding Rocket Contract
  • SpaceX Conducts Static Test Firing Of Next Falcon 1 Rocket
  • Pratt And Whitney Rocketdyne Contract Option For Solar Thermal Propulsion Rocket Engine

  • ELA-3 Launch Zone Receives Its Fourth Ariane 5 Of 2008
  • Arianespace Launches ProtoStar I For Asian DTH Market
  • Inmarsat And ILS Set August 14 For Proton Flight With Inmarsat Satellite
  • Russia Launches Rocket With Military Satellite

  • NASA Sets Launch Dates For Remaining Space Shuttle Missions
  • NASA shuttle to take last flight in May 2010
  • Disaster plan in place for Hubble mission
  • US space shuttle lands safely after installing Japanese lab

  • Station Crew Completes Spacewalk Preparations
  • NASA plans two ISS spacewalks next week
  • Shuttle astronauts bid farewell to space station crew
  • Discovery undocks from ISS

  • NASA And ESA Complete Comparative Exploration Architecture Study
  • Secure World Foundation Receives United Nations Permanent Observer Status
  • Boeing Submits Offer For NASA Facilities Development And Operations Contract
  • Russia seals agreement with private investor for space tourism

  • China Makes Breakthrough In Developing Next-Generation Long March Rocket
  • Shenzhou VII Research Crew Ready To Set Out For Launch Center
  • China's Shot Heard Around The Galaxy
  • A Better Focus On Shenzhou

  • Eight Teams Taking Up ESA's Lunar Robotics Challenge
  • Three Engineers, Hundreds of Robots, One Warehouse
  • Tartalo The Robot Is Knocking On Your Door
  • Sega, Hasbro unveil new dancing robot

  • Phoenix Mars Lander Continues Sample-Collection Tests
  • Mission to bring back soil samples from Mars gets 2018 launch
  • Orbiting HiRISE Camera Saw Phoenix Heat Shield In Freefall
  • Will We Ever Reach Mars

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement