Subscribe free to our newsletters via your
. Space Travel News .




WOOD PILE
Lowering stand density reduces mortality of ponderosa pine stands
by Staff Writers
Redding CA (SPX) Nov 29, 2013


File image.

As trees grow larger in even-aged stands, competition develops among them. Competition weakens trees, as they contend for soil moisture, nutrients, and sunlight. Competition also increases trees' risk to bark beetles and diseases, and subsequently leads to a buildup of dead fuels.

A recent study, led by Dr. Jianwei Zhang, research forester at the U.S. Forest Service's Pacific Southwest Research Station, considered if the onset of this risk could be determined. The study, which appears in the Canadian Journal of Forest Research, also considered if the relationship between density and mortality varies with site quality as ponderosa pine stands developed.

Based on the analysis of 109 long-term research plots established on even-aged natural stands and plantations from 1944 to 1988, and 59 additional ponderosa pine plots measured by the Forest Service's Forest Inventory and Analysis group, these researchers found that site quality affected the relationship between density and mortality.

"Any silvicultural treatments that enhances growth will reduce mortality rate for a given stand density." Dr. Zhang said. "By establishing the self-thinning boundary lines from the size-density trajectories, the onset of mortality risk can be determined for ponderosa pine stands."

The research also confirmed the added value of such long-term study sites which allow new questions to be addressed that were not included in the original studies. Other recently published research from this group of scientists demonstrated thinning forest stands to a lower density reduces fuel buildup significantly, and enhances its economic value by increasing growth of residual trees.

Specifically, stand basal area, which is the cross sectional area of all trees in a stand measured at breast height, is not affected by thinning ponderosa pine stands to half the normal basal area of a specific site quality. If the stand has experienced high mortality caused by bark beetles, it can be thinned more heavily without sacrificing timber, biomass, or volume increment and plant diversity.

In addition, results from these long-term studies show that early shrub removal and tree density control are the most effective and efficient ways to reduce fuel buildup. Under Mediterranean climatic conditions, shrubs reduce overstory tree growth and keep tree crowns in contact with the shrub canopy. In turn, this growing fuel ladder can carry a ground fire into the crowns of the overstory trees.

Although carbon stocks may be the same with or without understory vegetation, by controlling competing vegetation, carbon is reallocated into the trees instead of shrubs; and carbon loss to wildfire is reduced.

These findings provide useful information for managers in their stand treatment projects within National Forest and private forestlands.

.


Related Links
Pacific Southwest Research Station
Forestry News - Global and Local News, Science and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WOOD PILE
VTT introduces deforestation monitoring method for tropical regions
Helsinki, Finland (SPX) Nov 27, 2013
Halting deforestation in tropical regions requires verification of forest conditions. VTT has developed a new satellite image based method for accurate assessment of tropical forest cover. Part of the EU's seventh framework programme, the ReCover project has involved using satellite imaging to map forest cover in sites in Mexico, Guyana, Columbia, Congo and the Fiji Islands over a period of up t ... read more


WOOD PILE
SpaceX postpones first satellite launch

Second rocket launch site depends on satellite size, cost-benefit

Private US launch of satellite delayed

Stepping up Vega launcher production

WOOD PILE
Curiosity Resumes Science After Analysis of Voltage Issue

Winter Means Less Power for Solar Panels

Unusual greenhouse gases may have raised ancient Martian temperature

How Habitable Is Mars? A New View of the Viking Experiments

WOOD PILE
Spotlight on China's Moon Rover

We're Going to the Moon!

NASA Spacecraft Begins Collecting Lunar Atmosphere Data

Big Boost for China's Moon Lander

WOOD PILE
The Sounds of New Horizons

On the Path to Pluto, 5 AU and Closing

SwRI study finds that Pluto satellites' orbital ballet may hint of long-ago collisions

Archival Hubble Images Reveal Neptune's "Lost" Inner Moon

WOOD PILE
Search for habitable planets should be more conservative

NASA Kepler Results Usher in a New Era of Astronomy

Astronomers answer key question: How common are habitable planets?

One in five Sun-like stars may have Earth-like planets

WOOD PILE
South Korea to launch homegrown rocket by 2020

XCOR and ULA Achieve Major Milestone With Liquid Hydrogen Engine

Wind Tunnel Testing Used to Understand the Unsteady Side of Aerodynamics

NASA and Sweden to test High Performance Green Propulsion technology

WOOD PILE
China pursues "zero window" launch for lunar probe

China launches first moon rover mission

China names moon rover "Yutu"

China launches experimental satellite

WOOD PILE
Comet ISON vs. the Solar Storm

Comet ISON vanishes as it circles the sun

Will comet ISON survive its near brush with the Sun?

NASA's Solar Observing Fleet to Watch Comet ISON's Journey around the Sun




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement