Space Travel News  
AEROSPACE
Low-speed wind tunnel test provides important data
by Kristen Hatfield for NASA News
Palmdale CA (SPX) Jul 25, 2022

A model of the X-59 forebody is shown in the Lockheed Martin Skunk Works' wind tunnel in Palmdale, California, in February of 2022.

Before NASA's quiet supersonic X-59 aircraft can take to the skies, plenty of testing needs to happen to ensure a safe first flight. One part of this safety check is to analyze data collected for the X-59's flight control system through low-speed wind tunnel tests.

The X-59 is central to NASA's Quesst mission to expand supersonic flight and provide regulators with data to help change existing national and international aviation rules that ban commercial supersonic flight over land. The aircraft is designed to produce a gentle thump instead of a sonic boom.

Recently, Lockheed Martin's Skunk Works facility in Palmdale, California, completed low-speed wind tunnel tests of a scale model of the X-59's forebody. The tests provided measurements of how wind flows around the aircraft nose and confirmed computer predictions made using computational fluid dynamics (CFD) software tools. The data will be fed into the aircraft flight control system and will allow the pilot to know the altitude, speed and angle that the aircraft is flying at in the sky.

"These tests help with developing the flight control system," said Jeff Flamm, NASA's aerodynamics and performance lead on Quesst. "This flight data is obtained from many instruments on the aircraft including air data probes, GPS and engine instrumentation. These wind tunnel tests allow us to verify our CFD predictions, which let us know our flight control system is safe to fly."

The Lockheed Martin Skunk Works low-speed wind tunnel produces air moving at the same speed that the real, full-scale X-59 will experience during takeoff and landing. However, most wind tunnels are too small to fit the nearly 100-foot-long aircraft. Therefore, it was more practical for Lockheed-Martin to build an 11.5% scale model of the X-59's forebody to simulate the airflow around the plane's nose.

Engineers placed small wind vanes on the X-59 model to measure the angle of the wind at the precise location of the air data instruments on the full-scale aircraft. The testing compared the data collected from the wind tunnel with computer model predictions to see how well they matched.

"The recent low-speed wind tunnel tests were a success," Flamm said. "The results of the tests matched NASA and Lockheed Martin's earlier computer predictions. There were no surprises that arose."

Quesst Mission Continues
Supersonic flight occurs when an aircraft travels faster than the speed of sound. This creates a shockwave that can make a very loud sonic boom, which can startle those on the ground. The X-59 is shaped to address that problem, generating a thump instead.

The aircraft design is important, but Quesst also has other crucial mission components. To provide regulators with data for changing aviation rules that ban commercial supersonic flight over land, NASA plans to fly the X-59 over a number of U.S. communities and survey populations on the acceptability of the sound they hear. The agency will share this information with national and international regulators.

Work on the X-59 continues, and the Quesst team plans for a first flight of the aircraft at the end of 2022.


Related Links
Quesst
Aerospace News at SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


AEROSPACE
US helicopters hold live-fire drills in South Korea
Seoul (AFP) July 25, 2022
US Army Apache attack helicopters stationed in South Korea are holding live-fire drills with guns and rockets, the US military said Monday, as Seoul looks to boost deterrence against the nuclear-armed North. The drills - the first such exercises since 2019 - come after a record-breaking blitz of weapons tests by Pyongyang this year, including firing an intercontinental ballistic missile at full range for the first time since 2017. The training, which runs to July 29, is being carried out at th ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

AEROSPACE
AEROSPACE
Sol 3544: Bye-Bye Bolivar

Sols 3541-3543: Teamwork? Sure!

NASA adds 2 helicopters to mission to bring Mars samples back to Earth

NASA details plans to bring back Mars rock samples

AEROSPACE
NASA's VIPER prototype motors through Moon-like obstacle course

NASA's LRO finds Lunar pits harbor comfortable temperatures

Buzz Aldrin's Apollo 11 jacket sold for $2.7 mn

Terran Orbital concludes TCM-2 for CAPSTONE

AEROSPACE
Why Jupiter doesn't have rings like Saturn

You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

AEROSPACE
How do collisions of rocks with planets help the planets evolve?

Lava caves of Hawaii Island contain thousands of unknown bacterial species

A New Method to Detect Exoplanets

Rocking shadows in protoplanetary discs

AEROSPACE
NASA prepares for Space Launch System rocket services contract

CAA launches consultation on UK space launch from Cornwall

Marine Management Organisation opens consultation on Virgin Orbit launch site

Northrop Grumman and NASA test SLS booster

AEROSPACE
Researchers: Chinese rocket stage to hit Earth in uncontrolled descent

China releases images of Martian satellite

China launches six new satellites

China's Tianzhou-3 cargo craft re-enters atmosphere under control

AEROSPACE
The plan to unlock the biggest wealth through asteroid mining

Some asteroids aged early by Sun

DLR to investigate dust from asteroid Ryugu

Hopping space dust may influence the way asteroids look and move









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.