Subscribe free to our newsletters via your
. Space Travel News .




TECH SPACE
Liquids on fibers - slipping or flowing?
by Staff Writers
Saarbrucken, Germany (SPX) Jul 05, 2015


File image.

Thin fibers play a tremendous role in many areas of our daily life, from the use of glass fibers in ultra-fast data transmission to textile fibers in our clothing. In order to enable special properties of these fibers, they are often coated with a thin liquid layer that is supposed to be stable and homogeneous.

However, for the production of drinkable water, the exact opposite features are desired: there, one aims at harvesting water, which is transported along the fiber as a liquid film or as liquid droplets, from fog. Now, scientists have been able to reveal, by means of lacquer films on glass fibers, whether liquid films slowly flow along the fiber or if they can slip faster on the fiber.

The team composed of Karin Jacobs and Sabrina Haefner from Saarland University, together with Oliver Baumchen from the Max Planck Institute for Dynamics and Self-Organization in Gottingen, and colleagues from Canada and France have been able to show for the first time, by means of novel experiments and mathematical models, how a liquid film moves on a fiber, depending on the fiber coating. The results of this study have now been published in the high-ranked journal "Nature Communications".

Many examples for liquids on fibers are known in nature. Just think about dew droplets on spider webs that you can observe during a walk in the morning. Indeed, humidity is collected on the fiber as droplets, as the liquid surface can be minimized this way. This phenomenon, which can also be observed for a stream of water flowing out of a faucet, is named the Rayleigh-Plateau instability.

"All systems drive towards their energetic minimum, and that is the droplet shape in this case", says Sabrina Haefner, a physicist in the research group of Karin Jacobs. This instability can be very useful in very dry and remote regions of the world. For example, in Chile's Atacama desert, the acquisition of drinkable water is essential for the locals and they harvest water from the humidity by means of fiber nets.

In industrial applications, however, it is often necessary to realize stable and homogeneous liquid films on fibers. So how does one manage to avoid this droplet formation? "The surface energy of the liquid, its viscosity, the thickness of the liquid film, as well as the diameter of the fiber, play an important role", explains Karin Jacobs. The international team of researchers has now found that the properties of the fiber itself also have a strong impact.

"The contact between the liquid and the fiber is indeed very important", says Oliver Baumchen from the Max Planck Institute for Dynamics and Self-Organization. "If the liquid slips on the fiber surface, the droplet formation is much faster than in the case of just flow along the fiber". The team of physicists tested this for liquid films supported by uncoated and Teflon-coated fibers. On uncoated fibers, the liquid film moved rather slowly, and droplet formation took longer, than on coated fibers, where the liquid film was able to slip.

"In line with mathematical models, these experiments allow for quantifying 'slippage' of liquid films and to precisely predict the dynamics of the droplet formation process", says Sabrina Haefner from Saarland University. The team of researchers agrees: Their results are very important for the design of novel fiber coatings.

The international team of researchers is composed of experimental and theoretical physicists from Saarland University (Saarbrucken, Germany), the Max Planck Institute for Dynamics and Self-Organization (Gottingen, Germany), McMaster University (Hamilton, Canada) and the ESPCI (Paris, France). The study by S. Haefner, M. Benzaquen, O. Baumchen, T. Salez, R. Peters, J.D. McGraw, K. Jacobs, E. Raphael, and K. Dalnoki-Veress with the title "Influence of Slip on the Plateau-Rayleigh Instability on a Fibre" has been published in the high-ranked journal "Nature Communications".


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Saarland University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Physicists shatter stubborn mystery of how glass forms
Waterloo, Canada (SPX) Jul 01, 2015
A physicist at the University of Waterloo is among a team of scientists who have described how glasses form at the molecular level and provided a possible solution to a problem that has stumped scientists for decades. Their simple theory is expected to open up the study of glasses to non-experts and undergraduates as well as inspire breakthroughs in novel nano materials. The paper publishe ... read more


TECH SPACE
SpaceX rocket explodes after launch

What cargo was lost in the SpaceX explosion?

Garvey Spacecraft selects Pacific Spaceport Complex

Sentinel-2A satellite ready for Launch from Kourou

TECH SPACE
Rover In Good Health After Communication Blackout

Veteran NASA Spacecraft Nears 60,000th Lap Around Mars, No Pit Stops

Scientists find methane in Mars meteorites

NASA Signs Agreements to Advance Agency's Journey to Mars

TECH SPACE
Russia to Land Space Vessel on Moon's Polar Region in 2019

Moon engulfed in permanent, lopsided dust cloud

Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

TECH SPACE
37 Years after Its Discovery, Pluto's Moon Charon Is Being Revealed

Much variety on Pluto's Close Approach Hemisphere, and a Charon dark pole

Ceres Spots Continue to Mystify in Latest Dawn Images

Different Faces of Pluto Emerging in New Images from New Horizons

TECH SPACE
Can Planets Be Rejuvenated Around Dead Stars?

Spiral arms cradle baby terrestrial planets

Supercomputer model shows planet making waves in nearby debris disk

Hubble sees a 'behemoth' bleeding atmosphere around a warm exoplanet

TECH SPACE
ESA spaceplane on display

US Rocketeers Take Home Championship

Communicating with hypersonic vehicles in flight

RS-25 Engine Fires Up for Third Test in Series

TECH SPACE
Cooperation in satellite technology put Belgium, China to forefront

China's super "eye" to speed up space rendezvous

Electric thruster propels China's interstellar ambitions

China Plans First Ever Landing On The Lunar Far Side

TECH SPACE
Exposed water ice detected on comet's surface

OSIRIS-REx Team Prepares for Next Step

Rosetta tracks debris around comet

MIRO maps water in comet's coma




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.