. Space Travel News .




.
CHIP TECH
Like fish on waves electrons go surfing
by Staff Writers
Bochum, Germany (SPX) Sep 27, 2011

File image.

Physicists at the RUB, working in collaboration with researchers from Grenoble and Tokyo, have succeeded in taking a decisive step towards the development of more powerful computers. They were able to define two little quantum dots (QDs), occupied with electrons, in a semiconductor and to select a single electron from one of them using a sound wave, and then to transport it to the neighbouring QD.

A single electron "surfs" thus from one quantum dot to the next like a fish on a wave. Such manipulation of a single electron will in the future also enable the combination of considerably more complex quantum bits instead of classical bits ("0" and "1" states). The researchers have reported their results in Nature.

Semiconductor physics: a fisherman's dream
Electrons can move as freely as fish in water in electric conductors (metals) and semiconductors such as silicon (Si) or gallium arsenide (GaAs), albeit not "swimming" of their own but moving owing to differences in voltage. Inside a metal, they are present as a huge number of fish that fill nearly the entire volume of water.

In semiconductors, this "fish density" is not as high and so the distance between the electrons (fish) is much larger. The electrons can be concentrated in a thin layer near the surface by the application of an external voltage.

The new method that the international team of researchers has developed now fulfils this "fisherman's dream" for semiconductor physicists. The electron "fish" are all in one layer close to the surface and easily, individually accessible from the surface.

Fishing one from the quantum dot
Prof. Andreas Wieck, physicist at the RUB, points out that there are, however no, "big fish," all electrons being similar and even always identical, undistinguishable objects.

The method that the researchers from Germany, France and Japan used, nevertheless enables the "emission" of individual electrons from the QD, moving them over a specific distance and then detecting them at the neighbouring QD.

A distance of four micrometres ( m) was used in the experiment - this is twenty times larger than a highly integrated transistor.

Targeted transport of individual electrons is possible in the following way: First, a QD is defined between the tips of four electrodes to form this zero-dimensional object, containing some hundred electrons.

The scientists subsequently send a sound wave along the semiconductor surface using interdigital (like two combs fitted together without touching each other) electrodes to which they apply a radio frequency voltage.

This method functions in the opposite way as the electrical discharge of a piezo ignition system in which a crystal is deformed to attain a voltage. The researchers applied voltage to the crystal and thus deform it, and the alternating voltage leads to the formation of a sound wave.

The fish surfs on the wave
In a sample, this wave moves, for example, from left to right through the quantum dot at the velocity of sound - inside the crystal at three kilometres per second. Its height is adjusted so that it extracts exactly one "fish" from it. The latter subsequently surfs on the wave in a one-dimensional channel. The "fish" arrives at the neighbouring quantum dot 4 m to the right thereof.

The researchers were able to attain good statistics by repetition of the waves and measurements and thus capable of determining the reliability of the method. During the first experiments, the probability of emission and detection of a single electron with the wave was 96 and 92%, respectively.

The innovation: aligning the fish
It is not possible to differentiate between the electrons "fish", but they can be differently aligned because they rotate like little spinning tops.

This is called the "spin" of the electron. For example one can align a fish with "its head upwards," let it be transported with the wave, and then detect it again at the target quantum dot still having "its head upwards."

The time for the spin to change is longer than the surfing time on the wave, so the probability of this occurring is very high. The quantum bits of the future will also consist of such spin-polarized electrons.

The researchers attained their results with samples prepared by so-called molecular beam epitaxy at the chair of Applied Solid State Physics at the Ruhr University Bochum.

They were structured in Tokyo and subsequently measured in Grenoble. But not only the samples, also a further development of this concept originates from Bochum: Prof. Wieck already published his vision of an electron directional coupler with two parallel one-dimensional channels, in which the electrons can skip from one to the other channel, 21 years ago.

The research team has in the meantime realized this vision based on the results presented here. A further publication is therefore to follow shortly.

Related Links
Ruhr-University Bochum
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com




 

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries








. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



CHIP TECH
Scientists play ping-pong with single electrons
Cambridge UK (SPX) Sep 23, 2011
Scientists at Cambridge University have shown an amazing degree of control over the most fundamental aspect of an electronic circuit, how electrons move from one place to another. Researchers from the University's Cavendish Laboratory have moved an individual electron along a wire, batting it back and forth over sixty times, rather like the ball in a game of ping-pong. The research f ... read more


CHIP TECH
Ariane 5 marks fifth launch for 2011

Countdown to first Soyuz launch at Kourou under way

Ariane rocket launches satellites after strike delay

Double prime for Astrium on next Ariane launch

CHIP TECH
Young Clays on Mars Could Have Been Habitable Regions

Opportunity on verge of new discovery

Opportunity Studies Chester Lake Rock Outcrop

Opportunity Inspects Next Rock at Endeavour

CHIP TECH
China to launch moon-landing probe around 2013

United Launch Alliance Launches GRAIL Spacecrafts To Moon

NASA launches twin spacecraft to study Moon's core

Second bid to launch NASA's Moon-bound spacecraft

CHIP TECH
Dwarf Planet Mysteries Beckon to New Horizons

The PI's Perspective: Visiting Four Moons, in Just Four Years, for All Mankind

Citizen Scientists Discover a New Horizons Flyby Target

View from the Summit: Hunting for KBOs at the Top of the World

CHIP TECH
Rocky Planets Could Have Been Born as Gas Giants

How Common Are Earth-Moon Planetary Systems

From Star Wars to Science Fact: Tatooine-Like Planet Discovered

Astronomers confirm first planet orbiting two stars

CHIP TECH
External Tank Was Backbone Of Shuttle Launches

The US will conquer deep space with Russian engines

Monster Rocket Will Eat American Space Program

NASA Announces Design For New Deep Space Exploration System

CHIP TECH
Chang'e-2 sends data back from L2

Mythbusting for Tiangong

Tiangong-1 launch will pave way for China's first space station

China to launch unmanned space module by Sept 30

CHIP TECH
Dawn Collects a Bounty of Beauty from Vesta

Dawn Flies Around Vesta

Astronomers Plan Last Look at Asteroid 1999 RQ36 Before OSIRIS-REx Launch

Dawn has completed the first phase of its exploration of Vesta


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement