Space Travel News  
SOLAR DAILY
Lead-free magnetic perovskites
by Staff Writers
Linkoping, Sweden (SPX) Nov 09, 2020

stock illustration only

Scientists at Linkoping University, Sweden, working with the perovskite family of materials have taken a step forwards and developed an optoelectronic magnetic double perovskite. The discovery opens the possibility to couple spintronics with optoelectronics for rapid and energy-efficient information storage.

Perovskites form a family of materials with many interesting properties: they are cheap to manufacture, have excellent light-emitting properties and can be tailored for different applications. Researchers have until now concentrated on developing variants for solar cells, light-emitting diodes and rapid optical communication.

Perovskites can consist of many different organic and inorganic substances, but they are defined by their special cubic crystal structure. One type of perovskite that contains halogens and lead has recently been shown to have interesting magnetic properties, opening the possibility of using it in spintronics.

Spintronics is the field of technology in which information is stored about the direction of rotation of a particle (its spin), not only its charge (plus or minus). Spintronics is thought to have huge potential for the next generation of information technology, since information can be transmitted at higher speeds and with low energy consumption.

It turned out, however, that the magnetic properties of halide perovskites have until now been associated only with lead-containing perovskites, which has limited the development of the material for both health and environmental reasons.

The scientists at Linkoping University have now, together with a large group of colleagues in Sweden, the Czech Republic, Japan, Australia, China and the US, and led by Professor Feng Gao of LiU, managed to create non-hazardous perovskite alloy, and produce a magnetic double perovskite.

They show in an article in Science Advances that magnetic iron ions, Fe3+, are incorporated into a previously known double perovskite with interesting optoelectronic properties and consisting of caesium, silver, bismuth and bromine, Cs2AgBiBr6.

The researchers have shown in experiments that the new material has a magnetic response at temperatures below 30 K (-243.15C).

"These are preliminary experiments from an exploratory investigation, and we are not completely sure of the origin of the magnetic response. Our results, however, suggest that it is probably due to a weak ferromagnetic or anti-ferromagnetic response. If so, we have a whole class of new materials for future information technology. But more research is needed, not least to obtain the magnetic properties at higher temperatures", says Feng Gao.

"Perovskites are exciting materials, and they have a huge potential for use in future products that need the cheap and rapid transfer of information", he says.

Research Report: "Magnetizing Lead-Free Halide Double Perovskites"


Related Links
Linkoping University
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Solar cells of the future
Nuremberg, Germany (SPX) Nov 04, 2020
Organic solar cells are cheaper to produce and more flexible than their counterparts made of crystalline silicon, but do not offer the same level of efficiency or stability. A group of researchers led by Prof. Christoph Brabec, Director of the Institute of Materials for Electronics and Energy Technology (i-MEET) at the Chair of Materials Science and Engineering at Friedrich-Alexander-Universitat Erlangen-Nurnberg (FAU), have been working on improving these properties for several years. During his ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
SOLAR DAILY
Geologists simulate soil conditions to help grow plants on Mars

NASA's Perseverance Rover Is Midway to Mars

Sensors on Mars 2020 Spacecraft Answer Long-Distance Call From Earth

Leonardo at work on robotic arms for the NASA and ESA Mars Sample Return mission

SOLAR DAILY
A new mineral from the Moon could explain what happens in the Earth's mantle

New remote sensing technique could bring key planetary mineral into focus

VIPER Rover will get driving headlights

AiRANACULUS to demonstrate feasibility of an advanced Lunar comms system

SOLAR DAILY
Where were Jupiter and Saturn born?

NASA's Webb To Examine Objects in the Graveyard of the Solar System

Lighting a Path to Find Planet Nine

The mountains of Pluto are snowcapped, but not for the same reasons as on Earth

SOLAR DAILY
Assessing the habitability of planets around old red dwarfs

About Half of Sun-Like Stars Could Host Rocky, Potentially Habitable Planets

Comets Had Impact in the Start of Life on Earth

Mars-sized rogue planet found drifting through the Milky Way

SOLAR DAILY
Sounding Rocket to See What Keeps Intergalactic Space Sizzling

ESA lays out roadmap to Ariane 6 and Vega-C flights

Rocket Lab launches 15th Mission - deploys sats Planet and Canon

Rockets need intelligence booster, say engineers

SOLAR DAILY
China Focus: 18 reserve astronauts selected for China's manned space program

State-owned space giant prepares for giant step in space

China's Xichang launch center to carry out 10 missions by end of March

Eighteen new astronauts chosen for China's space station mission

SOLAR DAILY
First scientific instrument installed on Lucy

Asteroid's scars tell stories of its past

Amateurs Reshape Asteroids from Their Backyard

Asteroid Ryugu shaken by Hayabusa2's impactor









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.