Space Travel News
CHIP TECH
Johns Hopkins team breaks through quantum noise
illustration only

Johns Hopkins team breaks through quantum noise

by Ajai Raj
Laurel, MD (SPX) Nov 21, 2025

Researchers from the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, and Johns Hopkins University in Baltimore have achieved a breakthrough in quantum noise characterization in quantum systems - a key step toward reliably managing errors in quantum computing. Their findings, published in Physical Review Letters, make important strides in addressing a long-standing obstacle to developing useful quantum computers.

Noise in quantum systems can come from traditional sources, like temperature swings, vibration, and electrical interference, as well as from atomic-level activity, like spin and magnetic fields, associated with quantum processing. Assessing the impact of noise on quantum algorithms is the first step to mitigating those effects, said Gregory Quiroz, a senior physicist at APL and an associate research professor in the Department of Physics and Astronomy at the Johns Hopkins University Krieger School of Arts and Sciences.

"Today's models are commonly too simplistic to capture how quantum noise affects computation on real hardware," Quiroz said. "Our work is trying to bridge that gap."

A Matter of Time (and Space)

Many simplified models can only capture single instances of noise, isolated to one moment and one location in the quantum processor. But the most significant sources of noise spread across space and time, Quiroz explained.

"Capturing the effects of noise on the system over time and in multiple locations is really important to successfully implementing quantum error-correcting codes fault-tolerantly," he said. "This is a problem we have to solve for large-scale quantum computers to work."

Exploiting Symmetry

A quantum system becomes exponentially more complex as it scales up, making it even more difficult to understand how noise propagates in the system. To overcome this obstacle, Quiroz and co-author William Watkins, a physics graduate student pursuing his doctorate at Johns Hopkins within Quiroz's research group, exploited a property of physics that helps simplify complex problems: symmetry.

"Symmetry provides structure, which allows us to simplify the problem by bringing in mathematical constructs that make it more tractable in the presence of noise," Quiroz said.

Watkins realized that he could apply a mathematical technique called root space decomposition, a method that organizes how actions take place in a quantum system, to radically simplify how the system is represented and analyzed. The technique had been used to make progress in other areas of quantum mechanics, but to their knowledge, no one had applied it to quantum noise characterization before.

"It gave us insight into the problem in a mathematically compact and beautiful way, and gave us language to describe the problem," Watkins said. "In one sense, you could say that our innovative framework is built on this mathematical foundation."

Simply put, applying this technique allows a quantum system to be represented as a ladder, with each rung serving as a discrete state of the system. Quiroz and Watkins could then apply noise to the system to see whether specific types of noise caused the system to jump from one rung to another.

"That allows us to classify noise into two different categories, which tells us how to mitigate it," explained Watkins. "If it causes the system to move from one rung to another, we can apply one technique; if it doesn't, we apply another."

This, in turn, will contribute in multiple ways to building error-resilient quantum systems, Quiroz said.

"Being able to characterize how noise impacts quantum systems helps us not only design better systems at the physical level but also develop algorithms and software that take quantum noise into account," he said.

APL's Quantum Portfolio

Quiroz noted that APL has expertise spanning the spectrum of quantum computing challenges - experimental physics, quantum algorithms, controlling quantum bits, and quantum error correction - and taking a noise-centric view of these research areas has been the main driver of the Laboratory's work.

"Noise is a fundamentally hard problem standing in the way of large-scale quantum processors," he said. "And APL is equipped with the expertise and ingenuity to solve it."

"Our wide-ranging quantum noise portfolio includes studying fundamental sources of noise, such as cosmic rays, and developing novel noise characterization and mitigation protocols," added Kevin Schultz, assistant program manager for Alternative Computing Paradigms in APL's Research and Exploratory Development Mission Area. "We are very excited about this particular study due to the insight it provides on the impacts of noise on quantum algorithms and error correction, and we plan to pursue the potential research threads it suggests in the future."

Research Report:Classical Non-Markovian Noise in Symmetry-Preserving Quantum Dynamics

Related Links
Johns Hopkins University Applied Physics Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
Zinc oxide device achieves electric control of triple quantum dots for quantum computing
Tokyo, Japan (SPX) Nov 15, 2025
Researchers at the Advanced Institute for Materials Research at Tohoku University have electrically controlled triple quantum dots in a zinc oxide semiconductor, marking a step toward quantum information processing using oxide materials. The study produced a zinc oxide device that forms and controls three coupled quantum dots by electric field. Each quantum dot reached the few-electron regime, confirming suitability for application as quantum bits. Zinc oxide is known for good spin coherence and s ... read more

CHIP TECH
CHIP TECH
NASA twin spacecraft depart Earth orbit to begin Mars mission

Ancient Martian groundwater may have prolonged habitability beyond previous estimates

What a Martian ice age left behind

Dust and Sand Movements Reshape Martian Slopes

CHIP TECH
Aerospace modules completed for Artemis lunar crew mission

Cislune Partners with UCF on Simulation to Improve Decision-Making for Future Lunar Missions

Japan launches initiative for lunar construction technology

SpaceX steps up planning for NASA lunar lander

CHIP TECH
Saturn moon mission planning shifts to flower constellation theory

Could these wacky warm Jupiters help astronomers solve the planet formation puzzle?

Out-of-this-world ice geysers on Saturn's Enceladus

3 Questions: How a new mission to Uranus could be just around the corner

CHIP TECH
How to spot life in the clouds on other worlds

3I/ATLAS Highlights Scale and Significance of Interstellar Objects Passing Through the Solar System

New study revises our picture of the most common planets in the galaxy

Closest-ever view of planet-forming disk captured around distant star

CHIP TECH
Blue Origin launches NASA Mars mission and nails booster landing

Dream Chaser spaceplane passes pre-flight tests at Kennedy Space Center

The next frontier in clean flight? Jet fuel from city waste

Solar flares pause Blue Origin-NASA Mars probe launch

CHIP TECH
China's Shenzhou-20 astronauts return to Earth after delay

Tiangong hosts dual crews after debris impact delays Shenzhou-20 return

Chinese astronauts use upgraded oven to barbecue chicken wings and steaks aboard space station

China unveils 2026 mission for next generation crewed spaceship

CHIP TECH
Halloween fireballs could signal increased risk of cosmic impact or airburst in 2032 and 2036

Southern Taurid meteor shower to peak this week with bright fireballs

Europe advances asteroid defense as GomSpace secures operational support contract

Asteroid with Second-Fastest Orbit Discovered Hidden in Sunlight

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.