Space Travel News  
SOLAR DAILY
Ionic 'solar cell' could provide on-demand water desalination
by Staff Writers
Washington DC (SPX) Nov 17, 2017


This is an artist's rendition of bipolar-membrane design for ionic electricity generation.

Modern solar cells, which use energy from light to generate electrons and holes that are then transported out of semiconducting materials and into external circuits for human use, have existed in one form or another for over 60 years.

Little attention has been paid, however, to the promise of using light to drive another electricity-generating process - the transport of oppositely charged protons and hydroxides obtained by dissociating water molecules. Researchers in America report such a design, which has promising application in producing electricity to turn brackish water drinkable, on November 15 in the journal Joule.

The researchers, led by senior author Shane Ardo, an Assistant Professor of Chemistry, Chemical Engineering, and Materials Science at the University of California, Irvine, write that they have crafted an "ionic analog to the electronic pn-junction solar cell," harnessing light to exploit the semiconductor-like behavior of water and generate ionic electricity. They hope to use such a mechanism to manufacture a device that would directly desalinate saltwater upon exposure to sunlight.

"There had been other experiments dating back to the 1980s that photoexcited materials so as to pass an ionic current through them, and theoretical studies said that those currents should be able to reach the same levels as their electronic analogs, but none of them worked all that well," says first author William White, a graduate student in Ardo's research group.

In this case, the researchers attained more success by allowing water to permeate through two ion-exchange membranes, one that mostly transported positively charged ions (cations) like protons and one that mostly transported negatively charged ions (anions) like hydroxides, functioning as a pair of chemical gates to attain charge separation.

Shining a laser on the system prompted light-sensitive organic dye molecules bound to the membrane to liberate protons, which then transported to the more acidic side of the membrane and produced a measurable ionic current and voltages of over 100 mV in some instances (60 mV on average).

Despite crossing the 100 mV photovoltage threshold at times, the level of electric current that the double-membrane system can achieve remains its chief limitation. The photovoltage would need to be magnified by more than another factor of two to reach the ~200 mV mark necessary to desalinate seawater, a target that the researchers are optimistic about hitting.

"It all comes down to the fundamental physics of how long the charge-carriers persist before recombining to form water," Ardo says. "Knowing the properties of water, we are able to more intelligently design one of these bipolar-membrane interfaces so that we can maximize the voltage and the current."

In the long run, desalination is just one possible application of the synthetic light-driven proton pump developed by the researchers. It could also have potential for interfacing with electronic devices, or even for powering signaling in brain-machine interfaces and other "cyborg cells" that combine living tissue and artificial circuity, a role that cannot be filled by traditional solar cells, which are unstable in biological systems.

"We have had a lot of ideas about what this technology could be used for; it's just a question of learning enough to cross between fields and make the device work for those intended applications," says Ardo. "I think this is just another example of what you can do when you have scientists who are trained across many disciplines and think outside the box."

Research Report: Joule, White et al.: "Conversion of visible light into ionic power using photoacid-dye-sensitized bipolar ion-exchange membranes"

SOLAR DAILY
Butterfly wing inspires photovoltaics that could triple light absorption
Karlsruher, Germany (SPX) Nov 15, 2017
Sunlight reflected by solar cells is lost as unused energy. The wings of the butterfly Pachliopta aristolochiae are drilled by nanostructures (nanoholes) that help absorbing light over a wide spectrum far better than smooth surfaces. Researchers of Karlsruhe Institute of Technology (KIT) have now succeeded in transferring these nanostructures to solar cells and, thus, enhancing their light absor ... read more

Related Links
Cell Press
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
SOLAR DAILY
NASA Opens $2 Million Third Phase of 3D-Printed Habitat Competition

How long can microorganisms live on Mars

Insight will carry over two million names to Mars

Opportunity Does a Wheelie and is Back on Solid Footing

SOLAR DAILY
NASA Team Studies CubeSat Mission to Measure Water on the Moon

Russia locks up six for Moon flight simulation

Low-cost clocks for landing on the Moon

Human presence in Lunar orbit one step closer with successful RS-25 engine test

SOLAR DAILY
Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target

Juno Aces 8th Science Pass of Jupiter, Names New Project Manager

Jupiter's X-ray auroras pulse independently

SOLAR DAILY
Scientists find potential 'missing link' in chemistry that led to life on earth

18-Month Twinkle in a Forming Star Suggests a Very Young Planet

Overlooked Treasure: The First Evidence of Exoplanets

Atmospheric beacons guide NASA scientists in search for life

SOLAR DAILY
Vega launches Earth observation satellite for Morocco

Orbital ATK Successfully Tests First Motor Case for Next Generation Launch Vehicle

Russia embezzlement probe at rocket firm Soyuz

Alaska Aerospace Launches Aurora Launch Services Company

SOLAR DAILY
China's reusable spacecraft to be launched in 2020

Space will see Communist loyalty: Chinese astronaut

China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

SOLAR DAILY
Unlucky dinosaurs: Scientists say asteroid had 13 percent chance of triggering extinction

Dawn Explores Ceres' Interior Evolution

Return of the Comet: 96P Spotted by ESA, NASA Satellites

Astronomers Complete First International Asteroid Tracking Exercise









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.