. Space Travel News .




.
ENERGY TECH
Ionic liquid catalyst helps turn emissions into fuel
by Liz Ahlberg, Physical Sciences Editor University of Illinois
Champaign, IL (SPX) Oct 12, 2011

Biofuel production (left) compared to fuel produced via artificial synthesis. Crops takes in CO2, water and sunlight to create biomass, which then is transferred to a refinery to create fuel. In the artificial photosynthesis route, a solar collector or windmill collects energy that powers an electrolyzer, which converts CO2 to a synthesis gas that is piped to a refinery to create fuel. | Graphic by Dioxide Materials

An Illinois research team has succeeded in overcoming one major obstacle to a promising technology that simultaneously reduces atmospheric carbon dioxide and produces fuel.

University of Illinois chemical and biological engineering professor Paul Kenis and his research group joined forces with researchers at Dioxide Materials, a startup company, to produce a catalyst that improves artificial photosynthesis.

The company, in the university Research Park, was founded by retired chemical engineering professor Richard Masel. The team reported their results in the journal Science.

Artificial photosynthesis is the process of converting carbon dioxide gas into useful carbon-based chemicals, most notably fuel or other compounds usually derived from petroleum, as an alternative to extracting them from biomass.

In plants, photosynthesis uses solar energy to convert carbon dioxide (CO2) and water to sugars and other hydrocarbons. Biofuels are refined from sugars extracted from crops such as corn.

However, in artificial photosynthesis, an electrochemical cell uses energy from a solar collector or a wind turbine to convert CO2 to simple carbon fuels such as formic acid or methanol, which are further refined to make ethanol and other fuels.

"The key advantage is that there is no competition with the food supply," said Masel, a co-principal investigator of the paper and CEO of Dioxide Materials, "and it is a lot cheaper to transmit electricity than it is to ship biomass to a refinery."

However, one big hurdle has kept artificial photosynthesis from vaulting into the mainstream: The first step to making fuel, turning carbon dioxide into carbon monoxide, is too energy intensive. It requires so much electricity to drive this first reaction that more energy is used to produce the fuel than can be stored in the fuel.

The Illinois group used a novel approach involving an ionic liquid to catalyze the reaction, greatly reducing the energy required to drive the process. The ionic liquids stabilize the intermediates in the reaction so that less electricity is needed to complete the conversion.

The researchers used an electrochemical cell as a flow reactor, separating the gaseous CO2 input and oxygen output from the liquid electrolyte catalyst with gas-diffusion electrodes.

The cell design allowed the researchers to fine-tune the composition of the electrolyte stream to improve reaction kinetics, including adding ionic liquids as a co-catalyst.

"It lowers the overpotential for CO2 reduction tremendously," said Kenis, who is also a professor of mechanical science and engineering and affiliated with the Beckman Institute for Advanced Science and Technology.

"Therefore, a much lower potential has to be applied. Applying a much lower potential corresponds to consuming less energy to drive the process."

Next, the researchers hope to tackle the problem of throughput. To make their technology useful for commercial applications, they need to speed up the reaction and maximize conversion.

"More work is needed, but this research brings us a significant step closer to reducing our dependence on fossil fuels while simultaneously reducing CO2 emissions that are linked to unwanted climate change," Kenis said.

Graduate students Brian Rosen, Michael Thorson, Wei Zhu and Devin Whipple and postdoctoral researcher Amin Salehi-Khojin were co-authors of the paper. The U.S. Department of Energy supported this work.

Related Links
University of Illinois
Powering The World in the 21st Century at Energy-Daily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



ENERGY TECH
Physicists Turn Liquid into Solid Using an Electric Field
Atlanta, GA (SPX) Oct 12, 2011
Physicists have predicted that under the influence of sufficiently high electric fields, liquid droplets of certain materials will undergo solidification, forming crystallites at temperature and pressure conditions that correspond to liquid droplets at field-free conditions. This electric-field-induced phase transformation is termed electrocrystallization. The study, performed by scientist ... read more


ENERGY TECH
Indian-French satellite put into orbit

Chinese rocket sends French telecom satellite into space

On-time preparations continue for Soyuz' milestone mission from French Guiana

US telecoms satellite reaches designated orbit

ENERGY TECH
Video Documents Three-Year Trek on Mars by NASA Rover

Mars Express: Current flows and 'islands' in Ares Vallis

Opportunity is on the Move Again

Tracing the Canals of Mars

ENERGY TECH
Subtly Shaded Map of Moon Reveals Titanium Treasure Troves

NASA's Moon Twins Going Their Own Way

Titanium treasure found on Moon

NASA Invites Students to Name Moon-Bound Spacecraft

ENERGY TECH
Series of bumps sent Uranus into its sideways spin

Mission to Mysterious Uranus

Spinning hourglass object may be the first of many to be discovered in the Kuiper belt

Dwarf Planet Mysteries Beckon to New Horizons

ENERGY TECH
Astronomers Find Elusive Planets in Decade-Old Hubble Data

University of Texas-led Team Discovers Unusual Multi-Planet System with NASA's Kepler Spacecraft

Heavy Metal Stars Produce Earth-Like Planets

Doubts Over Fomalhaut b

ENERGY TECH
Russia puts new Rus-M carrier rocket project on hold

Russia to abandon rocket booster work

Pee power: Urine-loving bug churns out space fuel

NASA Tests Deep Space J-2X Rocket Engine at Stennis

ENERGY TECH
China's first space lab module in good condition

Takeoff For Tiangong

Snafu as China space launch set to US patriotic song

Civilians given chance to reach for the stars

ENERGY TECH
New View of Vesta Mountain From NASA's Dawn Mission

Almahata Sitta Meteorites Could Come From Triple Asteroid Mash-Up

Hyperactive Hartley 2 has a split history

The Secrets of Asteroid Minerva and its Two Moons


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement