. Space Travel News .




.
EXO LIFE
Interstellar Crashes Could Toss Out Habitable Planets
by Staff Writers
Moffett Field CA (SPX) Aug 24, 2011

One of the protoplanetary disks in the Orion Nebula. Credit: NASA / ESA and L. Ricci (ESO)

Our solar system, where planets have a range of sizes and move in near-circular paths, may be rather unusual, according to a German-British team led by Professor Pavel Kroupa of the University of Bonn.

The astronomers, who publish their model in the journal Monthly Notices of the Royal Astronomical Society, find that forming planetary systems may be knocked around by crashes with nearby clumps of material, leading to systems where planets have highly inclined orbits and where the smaller (and potentially habitable) worlds are thrown out completely.

The planets in our solar system, including the Earth, orbit in the same direction around the Sun as the Sun spins, mostly move in paths not so different from circles and are also more or less lined up into a plane not tilted very far with respect to the solar equator.

But planetary systems around other stars can be very different, with some worlds moving in the opposite direction to the spin of their stars and with highly tilted orbits. For the first time the team of astronomers think they have a convincing model that explains these radically different systems.

Both the shape of and direction of travel of planets in our solar system were thought to result entirely from the formation of the Sun and planets more than 4,600 million years ago.

Our local planetary system is believed to have formed as a cloud of gas and dust (a nebula) that collapsed into a rotating disk under the influence of gravity. The planets then grew from clumps of material within this so-called protoplanetary disk.

The new work suggests that oddly shaped orbits may result from a rather less smooth process. The team think that if the protoplanetary disk enters another cloud of material, it can draw off up to about 30 times the mass of Jupiter from the cloud.

Adding this extra gas and dust tilts the disk and hence the angle of the final orbits. Most planetary systems are thought to form in clusters of stars, where the member stars are fairly close together, so these encounters may be very common.

Team member Dr. Ingo Thies, also of the University of Bonn, has carried out computer simulations to test the new idea. He finds that as well as tilting over, loading the protoplanetary disk with material can even reverse its spin, so that it turns in a ''retrograde" sense, where it rotates in the opposite sense to its parent star. At the same time, the encounter compresses the inner region of the disk, possibly speeding up the planetary formation process.

In those circumstances, the simulation suggests that any planets that form will then be in highly inclined or even retrograde orbits. In some cases the orbits may even be tilted with respect to each other, leading to a highly unstable system. One by one, the least massive planets will be ejected completely, leaving behind a small number of 'hot Jupiters', massive worlds that move in orbits extremely close to their star.

In less extreme cases, the disk may only collect a small amount of additional gas and dust and change its tilt by a small amount. This may be what happened in our own solar system, where the weighted average tilt of planetary orbits to the Sun's equator is about 7 degrees.

Dr. Thies believes the Sun and planets are amongst the more orderly systems. "Like most stars, the Sun formed in a cluster, so probably did encounter another cloud of gas and dust soon after it formed. Fortunately for us, this was a gentle collision, so the effect on the disk that eventually became the planets was relatively benign. If things had been different, an unstable planetary system may have formed around the Sun, the Earth might have been ejected from the Solar System and none of us would be here to talk about it."

Professor Kroupa sees the model as a big step forward. "We may be on the cusp of solving the mystery of why some planetary systems are tilted so much and lack places where life could thrive. The model helps to explain why our solar system looks the way it does, with the Earth in a stable orbit and larger planets further out. Our work should help other scientists refine their search for life elsewhere in the Universe."




Related Links
University of Bonn
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries








. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



EXO LIFE
Breathing new life into Earth
Boston MA (SPX) Aug 22, 2011
Today, oxygen takes up a hefty portion of Earth's atmosphere: Life-sustaining O2 molecules make up 21 percent of the air we breathe. However, very early in Earth's history, O2 was a rare - if not completely absent - player in the turbulent mix of primordial gases. It wasn't until the "Great Oxidation Event" (GOE), nearly 2.3 billion years ago, when oxygen made any measurable dent in the atmosphe ... read more


EXO LIFE
The fifth Ariane 5 of 2011 is ready for integration of its dual-satellite payload

Russian spaceship crashes back to Earth

Glonass-M satellite launch postponed for additional check

Russia 'grounds Soyuz rockets' after space crash

EXO LIFE
Russian, European space agencies to team up for Mars mission

New Rover Snapshots Capture Endeavour Crater Vistas

France, Russia talk of Mars mission

Possibility of Mars microbial life eyed

EXO LIFE
NASA's Next Generation Robotic Lander Gets Sideways During Test

Moon Express Gets Thumbs-Up from NASA for Developing New Lunar Landing Technology

NASA Moon Mission in Final Preparations for September Launch

Neil Armstrong urges return to the Moon

EXO LIFE
The PI's Perspective: Visiting Four Moons, in Just Four Years, for All Mankind

Citizen Scientists Discover a New Horizons Flyby Target

View from the Summit: Hunting for KBOs at the Top of the World

Hubble telescope spots tiny fourth moon near Pluto

EXO LIFE
A Planet Made of Diamond

Astronomers Find Ice and Possibly Methane on Snow White

Hubble to Target 'Hot Jupiters'

Stellar eclipse gives glimpse of exoplanet

EXO LIFE
US looks for answers after hypersonic plane fails

US military loses contact with hypersonic aircraft

NASA Selects Companies To Study Storing Cryogenic Propellants In Space

Ball Aerospace Develops Flight Computers for Next-Generation Launch Vehicles

EXO LIFE
Orbits for Tiangong

Chinese orbiter launch failure will not affect unmanned space module launch

Rocket malfunction causes satellite to not reach preset orbit

China satellite aborts mission after 'malfunction'

EXO LIFE
NASA Plans to Visit a Near-Earth Asteroid

Comet Elenin Poses No Threat to Earth

Asteroid Photographer Beams Back Science Data

A Comet Collision to Come?


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement