Space Travel News  
SOLAR DAILY
Interfacial engineering for improved stability of flexible perovskite solar cells
by Staff Writers
Beijing, China (SPX) Jan 04, 2023

Flexible Perovskite solar cells

"For the perovskite film, there are some factors influencing the intrinsic material stability," said paper author Qi Chen, professor from Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology.

"(a) Stress would accumulate with temperature changes because of mismatched lattice and thermal expansion coefficients. It brought about delamination, or accelerated decomposition. (b) Both water vapor and oxygen could have an irreversible reaction with the perovskite crystal. (c) Illumination causes the weak link in the perovskite or adjacent layers to break."

Chen explained that besides the above stabilizing factors of the rigid devices, the stability of f-PSC is affected by other conditions. The degradation mechanism of flexible devices should be explored and summarized in more detail.

"Interface Modification can passivate defects, improve interfacial adhesion, suppress ion migration, optimize band structure and regulate residual stress," Chen said. "Based on the latest research progress, we summarize the application of Interface Modification in flexible perovskite solar cells."

For the hole transport layers and electron transport layers, Interface Modification can increase the ability of the transport layer to block water and oxygen, and reduce the interface recombination by controlling the SnO2 nanocrystals, which is the key to enhance device performance.

As for the active layer, the rough morphology of the flexible substrate directly affects the quality of the perovskite film, and the deep energy level defects inside and on the surface lead to increased interfacial nonradiative recombination.

The Interface Modification not only improves the quality of the perovskite film, but also improves the interfacial adhesion and the flexibility of the film, thus improving the performance of the cell.

In addition, the robustness, conductivity, and transparency of flexible electrodes can be improved by interfacial engineering.

"To further improve the efficiency and stability of f-PSCs, the complex interplay between those different interfaces should be studied in detail," Chen said. "Interfacial engineering plays a critical role in the optoelectronic performance of f-PSCs. We systematically investigate the influence of the flexible substrate on charge extraction, charge transportation, and charge recombination in f-PSCs. A deeper understanding of interfacial charge dynamics is conducive to figuring out the degradation mechanism of f-PSC."

"Despite significant progress in recent years, f-PSCs have to reach large-scale production and commercial operation. Therefore, interface engineering is still the key way to solve the issues plaguing the functionality and operation of f-PSCs," Chen said.

First, a thorough understanding of the interfacial characteristics and the related charge carrier dynamics is essential for the industrialization of f-PSC in the future. To meet the requirements of large-area device fabrication, the innovative active light-absorbing material and CTL could be developed until we accumulated sufficient precise knowledge. After reducing photovoltaic energy loss and overcoming instability issues, the industrialization of f-PSCs could be promoted.

Second, interfacial engineering is also critically important for flexible tandem cells. If subcells are connected in series, then the interconnection layers should have outstanding charge transporting ability to act as recombination layers. Moreover, the upper layer should ensure satisfactory light absorption by the back cell. Only by delicate control of the interface property can those tandem cells to be optically thick and electrically thin enough. The public is aware of the true potential of flexible perovskite photovoltaic devices.

Other contributor includes Jie Dou, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology.

Research Report:Interfacial Engineering for Improved Stability of Flexible Perovskite Solar Cells


Related Links
Beijing Institute of Technology
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
New solar cell material could be used in space
Warwick UK (SPX) Jan 05, 2023
Research led by the University of Warwick will investigate a new type of solar cell material, which could be used in space, in a bid to reduce reliance on fossil fuels. The European Research Council (ERC) has approved a five-year study which will delve into the atomic-level structure of a new type of solar cell material. This will address issues including stability and lifespan of metal halide perovskite compounds, which decrease in high humidity, strong sunlight and at elevated temperatures. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
SOLAR DAILY
MOXIE sets consecutive personal bests and Mars records for oxygen production

NASA explores a winter wonderland on Mars

The 10 Days of Christmas: Sols 3689-3698

InSight goes silent as Martian dust and cold ends mission

SOLAR DAILY
Researchers discover solar wind-derived water in lunar soils

Moon water imager integrated with NASA's Lunar Trailblazer

ESA to invite companies to connect with the Moon

Building a powerhouse in deep space

SOLAR DAILY
Juno spacecraft recovering memory after 47th Flyby of Jupiter

Four decade study finds mysterious patterns in temperatures at Jupiter

Comet impacts could bring ingredients for life to Europa's ocean

Juno exploring Jovian moons during extended mission

SOLAR DAILY
Assembly begins on NASA's next tool to study exoplanets

What it would take to discover life on Saturn's icy moon Enceladus

Kepler's first exoplanet is spiraling toward its doom

Two exoplanets may be mostly water, Hubble and Spitzer find

SOLAR DAILY
Last SpaceX launch of 2022 carries Israeli reconnoissance satellite into orbit

Falcon 9 rocket launches 54 Starlink satellites

Inauguration of mainland Europe's first satellite launch complex

Virgin Orbit' Launcherone Systems given green light for upcoming mission

SOLAR DAILY
Chinese space-tracking ship sets sail for new missions

China's space sector set to rocket into future

China's space station Tiangong enters new phase of application, development

China's new space station opens for business in an increasingly competitive era of space activity

SOLAR DAILY
Construction Begins on NASA's Next-Generation Asteroid Hunter

HAARP to bounce signal off asteroid in NASA experiment

How Hera asteroid mission will phone home

Ancient asteroid grains provide insight into the evolution of our solar system









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.